revista de cultura científica FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
Busca ampliar la cultura científica de la población, difundir información y hacer de la ciencia
un instrumento para el análisis de la realidad, con diversos puntos de vista desde la ciencia.
  P01 P02  
 
     
Historia natural de la inteligencia
 
Gabriel Ramos Fernández
conoce más del autor
     
 
HTML ↓
PDF Regresar al índice artículo siguiente
     
Una población de chimpancés en África Occidental utiliza piedras de diferente tamaño que funcionan como yunques y martillos para romper la cáscara de las nueces de las que se alimentan, en ocasiones llevando su martillo con ellos hacia otros lugares en donde parecieran saber que hay más nueces pero pocas piedras. Otras poblaciones de chimpancés, que han tenido la misma especie de nuez en su hábitat durante el mismo tiempo, no las utilizan y parecen no saber nada de yunques y martillos. Roberto, un mono araña macho y dominante en su grupo, descansa a varios árboles de distancia de Enrique, otro macho que ha encontrado a Rigoberta, una hembra en estro. Estos dos copulan y se quedan abrazados por un tiempo hasta que Roberto despierta, se mueve haciendo ruido en las ramas y emite una vocalización, ante lo cual Enrique ataca a Rigoberta y la baja del árbol, justo a tiempo para que Roberto llegue y los vea separados y no abrazados. Pareciera que Enrique sabía que Roberto se enojaría y lo castigaría por estar con Rigoberta, y por eso cambió su conducta de afiliación a agresión de manera tan súbita.

Una abeja europea forrajea a gran distancia de su colmena, regresando para informarles a las demás con una danza acerca de la distancia, dirección y calidad del sitio encontrado, a lo cual éstas responden dirigiéndose exactamente hacia allá. Si movemos la colmena cuando las abejas ya recibieron el mensaje pero aún no han salido a forrajear, las abejas compensan el movimiento de la colmena y el del sol durante el tiempo transcurrido, como si tuvieran un mapa mental del territorio completo y hubieran notado el cambio en la posición de la colmena con respecto al sitio de alimento sobre el que les informaron.

A pesar de que estos ejemplos podrían impresionarnos por igual, no le atribuimos la misma inteligencia a una abeja que a un chimpancé. Incluso al comparar a un mono araña con un chimpancé, se nos antoja más inteligente el último. Esto puede deberse en parte al extraordinario parecido que algunas especies de primates guardan con nosotros, por lo que pensamos que deben tener habilidades similares a las nuestras. Pero, ¿qué significan realmente estas “habilidades similares”? ¿está justificado pensar que una especie cercana a nosotros es más inteligente que otras más lejanamente emparentadas? ¿realmente existen habilidades distintas entre especies o más bien diferentes razones para ser inteligente? ¿por qué nos parece más inteligente un chimpancé que una abeja, o un mono que un perro?

Ciencia cognitiva

Durante las dos últimas décadas, ha ocurrido una revolución en nuestras ideas acerca de la conducta y la mente. El paradigma conductista porpuesto por Skinner en 1977, que en su versión más radical negó la existencia de cualquier sistema de control de la conducta con la excepción de la asociación generalizada de estímulos y respuestas, ha sido sustituido por otra visión muy diferente, en la que los fenómenos mentales son la etapa crítica en la que se guarda, organiza y procesa la información y en la que se estructuran las respuestas conductuales. La ciencia cognitiva actual es una interdisciplina en la que convergen psicólogos, científicos de la computación, filósofos, lingüistas, neurocientíficos y, más recientemente, etólogos.

Esta nueva ciencia ve a la mente como un procesador de información. Vale la pena revisar las características de estos sistemas para entender los fundamentos de la visión cognitiva de la mente y para comprender a qué grado esta visión representa un cambio de paradigma con respecto al anterior. En primer lugar, un procesador de información siempre tiene una finalidad, es decir, sirve a una función en particular. Esto significa que la información que se procesa y la manera en la que esto ocurre están definidos por el propósito para el cual está diseñado el sistema. Por lo tanto, especificar este propósito es un paso crucial para entenderlo. En segundo lugar, los procesadores de información trabajan con representaciones o símbolos. La información que está siendo manipulada, así como la manera en la que esto se hace, representan estados del mundo, es decir, que guardan una relación de correspondencia o isomorfismo con objetos y relaciones en el medio externo, en el cual el sistema cumple su función particular. Por último, el procesamiento de las representaciones está basado en algoritmos o conjuntos de instrucciones que pueden ser descritos formalmente al analizar el efecto que tienen sobre los símbolos, sin recurrir al significado funcional de éstos últimos. Es decir, el procesador manipula símbolos o representaciones de acuerdo a una lógica interna, y sin embargo su relación con el exterior está dada por el hecho de que los símbolos que están siendo procesados representan aspectos del mundo externo.

Por ejemplo, analicemos el procesador de texto en el cual estoy escribiendo: un conjunto de instrucciones que operan sobre variables de entrada, que son las teclas que ahora toco, y sobre un conjunto de variables de memoria, que son referencias a diferentes operaciones que se pueden realizar sobre el texto. El programa o algoritmo puede ser entendido sin recurrir a una descripción del sistema físico en el cual trabaja (en última instancia, las tablillas de silicón de la computadora, en donde diferentes puntos pueden estar en uno de dos estados posibles). Para entender cómo funciona mi procesador de texto es más importante entender la función que está cumpliendo para mí y los valores de las variables utilizadas en el software, que los ceros y unos con los cuales las celdas de silicón se encienden y se apagan en el hardware.

De lo anterior se derivan los diferentes niveles de análisis en la visión cognitiva de la mente: el nivel de conocimiento, que define el propósito del procesador de información, en particular la solución de algún problema en el mundo externo; un nivel formal, en el que los algoritmos que cumplen la función anterior son descritos con respecto al efecto que tienen sobre los símbolos que maneja el procesador; y por último, un nivel físico, en el cual se trata la implementación de los símbolos y los algoritmos en un sustrato físico. De acuerdo con esta visión cognitiva, un organismo puede producir conductas apropiadas debido a que realiza operaciones formales sobre elementos simbólicos que representan diferentes aspectos de su medio ambiente. Subrayo el hecho de que los algoritmos pueden ser descritos independientemente de la relación que mantengan con eventos externos: esto implica que los algoritmos pueden ser implementados en cualquier sustrato físico, siempre y cuando el resultado de las operaciones simbólicas sea el mismo. De ahí la importancia de las investigaciones en inteligencia artificial al interior de la ciencia cognitiva, ya que su objetivo es la implementación de algoritmos formales que manipulen información simbólica en sustratos artificiales que poco se parecen, físicamente, a los sustratos biológicos en los cuales la mente cumple sus funciones adaptativas.

De estos tres niveles de análisis, el primero, el del conocimiento, es de crucial importancia. Sin una comprensión cabal del problema que el sistema está tratando de resolver y de la información que la mente tiene acerca del mismo es imposible especificar el significado de los símbolos que están siendo manipulados por el algoritmo mental. Aunque este algoritmo fuera descrito hasta sus últimos detalles, no habría posibilidad de encontrar el significado de su salida (output) simbólica; pensemos, por ejemplo, en tratar de entender el funcionamiento de una computadora o de sus programas sin entender el problema para el cual fueron hechos. Podríamos desensamblar todos sus componentes o aprender un lenguaje de programación, pero si no sabemos qué relación guardan los símbolos con el exterior, sería imposible entender el sistema completo, sus ventajas como procesador de información o su relación con otros procesadores similares. Entonces, una pregunta importante en la ciencia cognitiva es: ¿qué problemas trata de resolver la mente?

Etología cognitiva

Dos de las premisas básicas de la ciencia cognitiva que ya mencioné justifican la inclusión de la etología como una de sus subdisciplinas. Una es que la especificación funcional de la mente es un paso crucial para su entendimiento, lo cual necesariamente incluye cualquier disciplina que tome en cuenta la función adaptativa de la mente al observar la conducta de los organismos, especialmente en su ambiente natural. La otra premisa importante es que la implementación física de algoritmos que trabajan con símbolos es posible en cualquier sistema, sin que se necesite una descripción física de su funcionamiento para, por lo menos, comenzar a investigarlo en los niveles formal y de conocimiento. Las dificultades inherentes al estudio de un órgano tan complejo como el cerebro han tenido como consecuencia que las neurociencias (que trabajan con lo que en ciencia cognitiva se conoce como el wetware) se encuentren retrasadas con respecto al conocimiento sobre la conducta. En la ciencia cognitiva, sin embargo, se pueden estudiar los mecanismos de la conducta en dos niveles, el de conocimiento y el formal, en los cuales se estudia la naturaleza de las representaciones y de los algoritmos que operan sobre ellas. Vendrá el día en que nuestros conocimientos acerca del sustrato físico de esas operaciones complete el modelo de mente que se construye en los otros dos niveles.

Un intento reciente de mostrar la importancia de la visión cognitiva de la mente en los estudios en torno a inteligencia animal es el de Alan C. Kamil, quien en 1994 propone un programa de investigación basado en el supuesto de que son precisamente las diferencias entre especies, que la tradición conductista ha ignorado, las más importantes para nuestro conocimiento acerca de la mente animal. El conductismo había utilizado animales como modelos de la mente humana porque su mente se consideraba una tabla rasa en la cual la experiencia imprimía sus efectos; la mente consistía simplemente en las reglas generales mediante las cuales la experiencia previa se relacionaba con la conducta. De acuerdo con esta visión conductista, todas las especies se comportarían siguiendo estas reglas generales de asociación, por lo que nuestra elección de una especie particular para estudiar la mente era poco importante. El conductismo puso un gran énfasis en la validez de los procedimientos experimentales, descuidando el significado funcional como medida de la validez externa de los resultados. Sin embargo, aparecieron demasiados reportes de diferencias en la habilidad de distintas especies para realizar una prueba determinada. Por ejemplo, dos poblaciones de saltaparedes que habitan en humedales en América del Norte aprenden un número diferente de canciones desde jóvenes. Los pájaros de la población del Este tienen un repertorio de 30 a 60 canciones, mientras que los de la población del Oeste cantan muchas más, de 120 a 220 canciones diferentes por individuo. Si uno toma crías de ambas poblaciones y las mantiene durante sus primeros meses en un ambiente artificial, expuestos a las mismas 200 canciones durante la etapa crítica del aprendizaje del canto, resulta que las crías de la población del Este siguen aprendiendo alrededor de 34 a 64 canciones, mientras que las de la Oeste aprenden de 90 a 113 canciones por individuo. Actualmente, ambas poblaciones están clasificadas como subespecies distintas, ya que entre ellas existe la suficiente variabilidad genética como para causar estas diferencias en el aprendizaje del canto, como lo demostraron Kroodsma y Verner. Un enfoque que buscaba procesos generales de aprendizaje no podía explicar estas diferencias, lo cual es parte importante de la reacción en contra del paradigma conductista en el estudio de la inteligencia animal.

Otro supuesto de la tradición conductista era que para acoplar un estímulo a una respuesta mediante condicionamiento, la naturaleza del estímulo era escencialmente irrelevante. Sin embargo, experimentos ya clásicos hechos por García y Koelling en 1966 el aprendizaje de la aversión a sabores, ya habían demostrado que algunos estímulos condicionados (como la sacarina) eran más efectivos que otros (como el ruido) para invocar una respuesta particular (la aversión) cuando se asociaban con estímulos incondicionados (envenenamiento). Al mismo tiempo, los resultados de ecología conductual revisados por Krebs y Davies, mostraban la sofisticación de los conocimientos que tenían los animales acerca de su entorno natural, los cuales adquirían por medio del aprendizaje como un componente innato de su conducta. Un experimento clásico por su sencillez es uno de Harper, que demuestra la “distribución libre ideal” en condiciones seminaturales. Imaginemos un estanque con patos y dos personas en ambos extremos del estanque aventando pedazos de pan a diferente velocidad. Una avienta los pedazos de pan dos veces más frecuentemente que el otro. En pocos minutos, los patos en el estanque se habrán distribuido en ambos extremos del estanque de manera que habrá el doble de patos en el lugar en donde caen los pedazos de pan dos veces más rápido. Si las dos personas ahora avientan pedazos de pan de diferente tamaño, entonces los patos se distribuirán de manera que haya más patos en donde la recompensa sea mayor. Lo más interesante de este sencillo experimento es que los patos son capaces de estimar la tasa de recompensa a través de la observación únicamente, ya que muchos de ellos no obtienen ningún pedazo antes de haber logrado la distribución libre ideal. Hallazgos como éste le restaban importancia a la validez externa de los rigurosos experimentos conductistas, que se presentaban como un reto a la búsqueda de mecanismos generales responsables de la conducta.

El nuevo programa de investigación, según Kamil, debe partir de una “historia natural de la inteligencia” de diferentes especies, con la cual se pueda formular hipótesis acerca de las diferencias en habilidades cognitivas entre especies. El conocimiento sobre el entorno, en el que la conducta ha sido seleccionada naturalmente, es importante como medida de la complejidad de los problemas que enfrentan los animales. Además de encontrar especies cercanamente relacionadas que resuelven problemas diferentes, será más fácil hacer predicciones acerca de los mecanismos responsables de estas soluciones. Kamil enmarca este nuevo paradigma al interior de una visión cognitiva, lo cual implica la necesidad de especificar más claramente lo que queremos decir cuando invocamos el mismo o distintos mecanismos responsables de la conducta en diferentes especies: si estas diferencias existen en el nivel formal, entonces deberíamos esperar encontrar diferentes representaciones y manipulaciones simbólicas; si existen en el nivel físico, estas diferencias podrían involucrar diferentes sustratos únicamente, y aun así trabajar con las mismas representaciones y algoritmos. Este punto no es trivial, ya que de las relaciones evolutivas entre las especies (es decir, aquellas de las cuales se podrían inferir relaciones anatómicas o funcionales a nivel cerebral) se podrá inferir únicamente una parte del funcionamiento de la mente. Dos cerebros parecidos podrían estar realizando diferentes operaciones y otros dos diferentes podrían realizar la misma.

Esto nos lleva a una cuestión más general, que ha sido motivo de debate desde la formulación del canon de Morgan en 1892 hasta nuestros días en la etología cognitiva: ¿cuál de todas las opciones posibles debemos seleccionar como mecanismo responsable de una habilidad particular? Al fin y al cabo, la conducta es la única forma de observar y cuantificar la inteligencia, y por lo menos, al principio, los mecanismos son enteramente hipotéticos. Es por esto que aún es difícil refutar las explicaciones basadas en simples asociaciones de experiencias previas con datos de campo incompletos y anecdóticos. Como un ejemplo de esto, podemos considerar el debate en torno a la existencia del engaño en primates. Existen numerosos reportes en los cuales monos o simios, en condiciones naturales o de cautiverio, parecieran estar engañando a sus semejantes, como cuando Kitui, un mono verde cuyo grupo se encontraba a punto de perder una pelea por territorio, emitió una vocalización de alarma en ausencia de un depredador; con esto provocó que todos los monos, tanto de su propio grupo como del contrario, corrieran a los árboles a resguardarse al igual que lo hacen cuando hay un depredador, como un leopardo. La conducta de Kitui, que parece tácticamente perfecta al haber hecho creer a los demás que había un depredador cerca, es difícil de explicar sin atribuirle la capacidad de saber que los demás pensarían que habría un depredador cerca. Sin embargo, Kitui se pudo haber equivocado, simplemente, debido a la excitación que le provocaba la pelea contra el otro grupo. Analizar conductas que por definición serán tan poco frecuentes como ésta complica el estudio de los algoritmos mentales responsables del engaño. Además, ¿tenemos realmente una idea de la complejidad real en la atribución de una creencia falsa? ¿qué tan complicado podría ser el mecanismo de excitación ante una pelea y el subsecuente “error” adaptativo? Escoger una opción basándonos en su mayor parsimonia con respecto a otras más complicadas parecería arbitrario si no tenemos conocimiento alguno acerca de la complejidad real de las operaciones mentales que se requerirían en cualquier caso.

El esquema que he delineado arriba acerca del procesamiento de información simbólica y su análisis a diferentes niveles se ha aplicado con éxito a conductas que parecen extremadamente complicadas, como la navegación en los insectos y la percepción de tasas de acumulación y disminución en aves. Se ha demostrado que existen procesos simples de manipulación simbólica a nivel formal, que son a su vez implementados en una arquitectura neuronal que es obviamente menos compleja que la de un humano, por ejemplo. Sin embargo, es posible que al analizar la conducta y hacer predicciones acerca de sus mecanismos sin conocer el poder de las manipulaciones simbólicas en la cognición, exageremos la complejidad del algoritmo que se necesitaría para resolver un problema dado. Considerénse por ejemplo, los modelos de algoritmo propuestos para explicar la conducta de forrajeo óptimo en condiciones de incertidumbre: el problema es cómo un organismo como un colibrí o una abeja, puede explotar óptimamente un recurso que se encuentra en cantidades discretas y variables (por ejemplo, flores con diferente cantidad de néctar). Mediante una descomposición del problema a decisiones sucesivas (dejar el sitio de abundancia o continuar en él, buscar uno nuevo o no, regresar al anterior o no y otras), se puede generar una conducta óptima que aproveche sitios fluctuantes, tomando en cuenta una sola variable acerca de las tasas anteriores de recompensa, promediándola y almacenando el resultado en una memoria temporal. El tamaño de la memoria, y por lo tanto el número de tasas de recompensa asociadas a flores visitadas anteriormente, determina si la conducta podrá maximizar su ganancia a largo plazo (guardando más información sobre más flores) o simplemente a corto plazo (guardando información sobre las últimas flores visitadas únicamente). Mediante simulaciones de este problema, se ha visto que aun con una memoria limitada y una maximización de la conducta a corto plazo, se puede obtener un forrajeo cercano al óptimo en todo el hábitat. Al mismo tiempo, la evidencia experimental con organismos reales se ajusta a las predicciones de estos modelos.

La visión cognitiva proporciona soluciones simples a problemas que son aparentemente bastante complejos. Por esta razón, no resulta tan fácil, como dictaría el canon de Morgan, excluir modelos cognitivos debido a su complejidad, ya que ésta existe en el problema mismo que el sistema está tratando de resolver, pues si las representaciones a nivel formal son isomórficas con respecto al mundo real que representan, debieran ser tan complejas como éste.

Cognición social

Ahora, ¿por qué atribuimos una mayor inteligencia a los primates que a otros grupos animales? Una de las respuestas a esta interrogante fue proporcionada por Nick Humphrey en 1976, quien argumentó que la compejidad del entorno social en el que viven los primates, inluyendo a nuestros propios ancestros, requiere habilidades cognitivas complejas, y por lo tanto actúa como una presión selectiva para que éstas se desarrollen. Hasta la fecha, esta hipótesis no ha sido explícitamente probada, sobre todo en términos comparativos, además de que sabemos poco acerca de la complejidad de otras sociedades de animales no primates. Sin embargo, el conocimiento actual acerca de las sociedades de primates es suficiente para imaginarnos la compejidad de los problemas que su entorno social les presenta diariamente.

Una de las características esenciales de la sociedades de primates es que están formadas por un grupo de individuos que se mantiene unido a pesar de que muchos de sus miembros no están relacionados genéticamente entre sí. Esto hace que las relaciones entre los miembros de un grupo estén siempre en un delicado balance entre la cooperación y la competencia. La mayoría de las sociedades de primates tiene una estructura jerárquica en la que algunos individuos tienen la prioridad de acceso a los recursos (reproductivos y alimentarios) y en la que el rango de cada uno está determinado no sólo por factores físicos, como fuerza y tamaño, sino por las relaciones que cada uno mantiene con los otros miembros, relaciones tanto de parentesco como de alianza. Los primates parecen ser los únicos animales que forman alianzas estratégicas para su propio beneficio: se apoyan recíprocamente entre animales no emparentados, forman más alianzas con los individuos dominantes y compiten entre sí por el apoyo de diferentes aliados potenciales. Estas complejas interacciones requerirían, aparentemente, que los miembros de un grupo pudieran evaluar a sus aliados potenciales con base en el balance de costos y beneficios que les proporcionaría una alianza a largo plazo.

El entorno social de los primates parece ser también único por presentar situaciones y conductas en las que se toman en cuenta las relaciones entre los demás individuos del grupo, y no únicamente las que mantienen con uno mismo. Por ejemplo, al formar una alianza, los primates parecen estimar la probabilidad de que dos individuos se alíen en contra de uno mismo. Igualmente, se ha visto que es más probable que un mono redirija su agresión hacia otro que mantiene una relación particular con el individuo con quien recientemente se enfrentó, e incluso que dos individuos no emparentados se enfrenten después de una pelea entre dos parientes suyos. Por ejemplo, después de una pelea entre A1 y B1, los monos A2 y B2, parientes de A1 y B1, respectivamente, tienden a enfrentarse más que en condiciones basales.

Al pensar en jerarquías de dominancia, una de las habilidades cognitivas más obvias que podrían estar utilizando los primates es la inferencia transitiva, mediante la cual se podría inferir un orden lineal de los rangos de cada quien en la jerarquía, sin tener que haber observado todas las interacciones de todos los individuos que la forman. Al observar la dominancia de A sobre B, y de B sobre C, un mono podría inferir que A es dominante sobre C, aun sin haber visto nunca a A enfrentarse con C. Hay evidencia experimental de que los monos pueden hacer esto: los resultados de experimentos con conjuntos lineales de elementos (cartas con ilustraciones, por ejemplo), parecen indicar que la secuencia de los elementos que se ordenan tiene una correspondencia con una representación de su orden lineal, con la cual el sujeto puede inferir el rango relativo de cualquier par de elementos en el conjunto. Sin embargo, se han propuesto formas alternativas en las que los monos podrían haber resuelto este problema, que hasta la fecha parecen ser igualmente factibles, y que están basadas en una asociación entre los pares, sin que se necesite mecanismo de inferencia alguna. Aunque es posible que los primates utilicen realmente una representación de orden lineal de los demás miembros del grupo para predecir su conducta futura basada en su rango, este procesamiento de información no pareciera ser más complejo que los mapas mentales con los que las abejas localizan los sitios de alimento.

Hay otra característica básica del complejo mundo social de un mono o simio: las relaciones entre diferentes miembros del grupo pueden clasificarse en diferentes tipos. Cuando se estudia un grupo de primates, se utilizan conceptos o categorías específicos que se refirieren a asociaciones particulares entre los diferentes miembros del grupo, con el fin de predecir su conducta y las asociaciones con los demás. ¿Utilizarán ellos mismos categorías similares? Para comprobar esta hipótesis, Dasser entrenó en 1988 a macacos en cautiverio para distinguir entre fotos de individuos de su propio grupo. En estas fotos aparecían parejas de madre-hijo o de individuos con otras relaciones entre sí. Después de un extenso periodo de entrenamiento en el que los sujetos eran premiados al distinguir correctamente una pareja de madre-hijo de otra diferente, dos macacos fueron capaces de distinguir nuevos pares de madre-hijo, con los que no habían sido entrenados. Sin embargo, ¿implica esto que los monos tenían desde antes el concepto “pareja madre-hijo”? Los sujetos podrían haber detectado parecidos físicos imperceptibles para nosotros.

La representación de las relaciones sociales no es tan fácil de formalizar como las propiedades de tiempo o número. Esto se debe a que las relaciones sociales son multidimensionales: mientras que el isomorfismo de las propiedades de número y tiempo puede estar directamente representado por estas mismas propiedades en el procesamiento de información, las relaciones sociales se entienden únicamente mediante el uso de términos abstractos como “dominancia” y “parentesco”, que de hecho son propiedades abstractas derivadas de la suma de las interacciones de dos o más individuos. La evidencia parece apuntar a que los primates son buenos primatólogos, ya que utilizan categorías como éstas para entender su entorno social. Pero aun el uso de categorías abstractas no podría constituir la diferencia más grande entre los primates y los demás animales, ya que una paloma, por ejemplo, parece ser capaz de adquirir el concepto de “árbol”: Herrnstein en 1990 entrenó a varias palomas a responder únicamente cuando se les presentara una fotografía que tuviera uno o más árboles. En estas imágenes podían verse árboles a lo lejos, de cerca, desde abajo o desde arriba. Después del entrenamiento se les presentaron fotografías nuevas que no habían visto antes, y las palomas respondieron como si hubieran generalizado a partir de ejemplares específicos a una clase general que incluía todas las características esenciales de un árbol.
 
 
 
 
Atribución

Como se explicó anteriormente, la definición del procesamiento de información a nivel de conocimiento requiere especificar los problemas que los niveles inferiores, el formal y el físico, estarán tratando de resolver. Esto se hace investigando tanto la información que la mente tiene a su disposición como el objetivo que tiene el procesamiento de esa información. Si la hipótesis de la inteligencia social tiene validez, debería ser cierto que en aquellas especies con sistemas sociales complejos, tanto la información acerca del entorno social como la finalidad que se persigue al procesarla son especialmente complicadas. Un procesador que pueda utilizar esta información y lograr esos fines especiales estará mejor adaptado. Si encontramos dos especies que se encuentran con un problema similar en su medio social, podemos analizar su mente a nivel de conocimientos e inicialmente asumir que las representaciones y algoritmos que existieran a nivel formal estarían tratando de resolver el mismo problema. Con respecto al nivel físico, como ya se mencionó, la manera en la que se puede implementar este procesamiento es independiente del análisis que realicemos en los otros dos niveles.

Uno de los debates centrales en la ciencia cognitiva, discutido por Christensen y Turner, es si sería válido utilizar términos como creencias y deseos, que son parte de nuestra manera cotidiana de hablar, para describir algunos procesos mentales. Utilizamos estos términos para explicar y predecir la conducta de los demás o para comunicarnos acerca de ella, asumiendo que la razón por la que la gente se comporta como lo hace es porque tiene creencias, deseos y un conocimiento particular acerca del mundo, todo lo cual le permite lograr sus objetivos particulares. La pregunta es si estos estados mentales son útiles para especificar el procesamiento de información a nivel de conocimiento, es decir, si son parte de la estructura del mundo en la que la mente fue diseñada para trabajar.

Una de las áreas donde esta “psicología folk” se ha utilizado con éxito, es en el desarrollo de una teoría de la mente en niños. Es evidente que los niños desarrollan una comprensión de la conducta de los demás de manera gradual, basándose al principio en hechos físicos y no mentales. Esta comprensión inicial se convierte en una teoría, en la cual le atribuyen creencias y deseos a los demás, y con la que son capaces de entender y predecir su conducta.

En 1991, Perner propuso un modelo de este desarrollo de la comprensión infantil de su entorno social. Tomando de Leslie la diferencia entre representaciones primarias y secundarias, Perner distingue entre aquellas que se refieren a la realidad percibida y aquellas que pueden ser de hechos pasados o hipotéticos. Existiría otra, la metarrepresentación, que es la representación de otra representación, y que se puede utilizar para modelar la mente de los demás, al atribuirles creencias y deseos que serían representados por el niño como representaciones acerca de algo. Perner propone que antes de los dos años, el niño tiene un solo modelo de la realidad, que constantemente se está renovando de acuerdo a los datos perceptuales recibidos. Este modelo único no le permite entender información simbólica o estados hipotéticos del mundo. Después de esta etapa, los niños de dos a tres y medio años de edad desarrollan la capacidad de formar modelos múltiples de la realidad, en los cuales es posible tener una representación primaria y una secundaria simultáneamente, con lo cual pueden entender información simbólica, ya que el referente de un símbolo es representado como una situación hipotética y no tiene que estar presente en la realidad. Igualmente, un modelo múltiple permite al niño representar los fines de los demás como una situación hipotética, y por lo tanto predecir su conducta basándose en una comprensión, parcial aún, de sus mentes. En esta etapa, la conducta de los demás se relaciona, en la mente del niño, con los fines particulares de los demás.

Pero no es sino hasta la tercera etapa, entre tres y medio y cuatro años, que los niños desarrollan una teoría de la mente completa. En esta etapa, la mente de los demás se representa como una representación, con lo cual los niños están utilizando una metarrepresentación. Ésta les permite entender las relaciones causales entre la mente de los demás y su conducta, en condiciones necesarias y suficientes para que se tenga una creencia o deseo en particular, y para que éstos afecten la conducta. Como un ejemplo de la evidecia experimental que apoya estos modelos, considérense los “experimentos de Maxi” realizados por Wimmer y Perner en 1983, sobre la capacidad de los niños de atribuir creencias falsas. En la versión original de estos experimentos, niños de tres a nueve años de edad observaban un teatro guiñol en el que Maxi, un títere que hacía el papel de niño, guarda un chocolate en un cajón azul y sale de escena. Después aparece la mamá de Maxi, que saca el chocolate del cajón azul y lo guarda en uno verde y sale de escena. Entonces se les pregunta a los niños espectadores en dónde buscaría Maxi el chocolate. Los niños menores de cuatro años contestaron consistentemente que en el cajón verde, aquel en el que ellos sabían que estaba el chocolate. Los niños mayores de cuatro años contestaron que en el cajón azul, ya que Maxi aún pensaría que el chocolate estaba ahí. Es decir, que los niños que contestaron correctamente estaban representando en sus mentes la creencia falsa de Maxi de que el chocolate estaría en el cajón azul. Estos resultados, y muchos similares obtenidos en muchas variantes con múltiples controles y situaciones, sugieren que la manera en que la mente del niño resuelve los problemas de su entorno social sufre un cambio radical a partir de los cuatro años, cuando forman, según Perner, sus primeras metarrepresentaciones.

Es posible que estas habilidades cognitivas sean una solución útil a los problemas que se encuentran en una sociedad complicada. Es decir que, individuos con diferentes estrategias y relaciones con los demás están en situaciones en las que la capacidad de leer las mentes de los demás representa una gran ventaja. Por ejemplo, en sociedades en las que los miembros de un grupo se separan temporalmente, sería ventajoso poder informar a los demás acerca de nuevos sitios de alimento, o al contrario, engañarlos u ocultarles información; incluso para poder enseñar activamente a los jóvenes, sería necesario poder atribuirles ignorancia (un estado mental). Podemos entonces utilizar este esquema de desarrollo de capacidades para analizar la escasa evidencia de atribución en los primates no humanos, y así acercarnos a especificar sus capacidades a nivel de conocimientos. Una parte de esta evidencia viene de observaciones anecdóticas y experimentos con chimpancés, en los que parecen ser capaces de reconocer el efecto de su conducta sobre la atención de los demás. Por ejemplo, individuos subordinados esconden evidencias que resultarían en castigo por parte de individuos dominantes, o evitan dar vocalizaciones asociadas a comida cuando ésta no es suficiente. En estos ejemplos, a nivel de conocimientos, el procesamiento de información estaría formado por una situación hipotética en la que otros ponen atención a uno mismo y la situación de la realidad en la que no la ponen. El algoritmo formal, entonces, consistiría en la comparación de ambas representaciones y la selección del mejor resultado posible. En estos ejemplos no se necesitaría la formación de una representación de las mentes de los demás, ya que la atención puede ser observada, tanto en la realidad como en una situación hipotética, como una propiedad física (la dirección de la mirada, por ejemplo) y no como una propiedad mental.

Otro experimento que trata más explícitamente estas ideas acerca de la capacidad de los chimpancés para atribuir conocimientos, fue hecho en 1990 por Povinelli y colaboradores. En éste, el sujeto es un chimpancé o macaco que observa a dos actores humanos: el actor A, que esconde una golosina en un aparato especial sin que el sujeto sepa exactamente en dónde, y el actor B, que estaría afuera del cuarto, a la vista del sujeto, pero sin poder ver el aparato. Después, ambos actores le inidicarían al sujeto dónde estaría la golosina señalando hacia diferentes partes del aparato. Los autores predecían que si el sujeto comprendía que ver implica saber (un estado mental), entonces debería hacerle caso al actor A y no al B. Mientras que la conducta de los macacos nunca pareció dar indicios de esta comprensión, los chimpancés alcanzarón un nivel de 70% únicamente después de un extenso entrenamiento. Aunque este resultado es significativo, es difícil intepretarlo como evidencia de que los chimpancés realmente pasaron la prueba basándose en la comprensión de que ver implica saber. Hay muchas otras alternativas que podrían explicar los resultados, y el debate aún no termina. Lo que sí es cierto es que se requiere más evidencia para poder concluir que los chimpancés pueden atribuir creencias.

Sin embargo, de comprobarse, significaría que los chimpancés sí son capaces de representar la mente de otro individuo, como los niños mayores de cuatro años. Con la evidencia actual, podemos concluir con seguridad que los primates, al interactuar con los demás, pueden utilizar modelos múltiples, que contienen representaciones primarias (de la realidad inmediata) y secundarias (de situaciones o eventos hipotéticos). Así, tendrían una capacidad de atribuir deseos, pero únicamente como objetivos, y en ese sentido tienen una teoría parcial de la mente, comparada con la teoría completa que nosotros utilizamos en nuestra vida cotidiana. La atribución de creencias, cuya presencia no se ha demostrado en animal no humano alguno, implicaría la capacidad de representar la mente de los otros como una representación.

Conclusión

Del análisis de la evidencia experimental resulta obvio que los problemas a los que se enfrentan las mentes de los primates en su medio social y las representaciones que forman de ellos, están apenas esbozados. Aplicando el mismo enfoque comparativo utilizado en la etología a los mecanismos que subyacen las habilidades similares entre niños y simios, he intentado especificar más exactamente la naturaleza de las representaciones utilizadas para realizar una de las operaciones mentales que parecen distinguir a los primates de los demás animales: la atribución de estados mentales. Los problemas definen las representaciones y la evidencia sugiere que los problemas que enfrentan los chimpancés en sus relaciones sociales son tan complejos, al menos, como los que enfrenta un niño de dos a tres y medio años. Los algoritmos responsables de la atribución de deseos como objetivos, que a su vez serían responsables de varias de las conductas de los demás miembros del grupo, incluirían un proceso análogo al uso de modelos múltiples en los niños. En estos modelos, las realidades percibida e hipotética se comparan y se diseña una respuesta conductual basada en el resultado de esta comparación.

¿Yace aquí una diferencia crucial entre la mente de los primates y la de los demás animales? Puede ser. Los modelos múltiples, sin embargo, son necesarios para la comunicación simbólica, con el fin de percibir un símbolo como una representación de una realidad no presente, y por lo tanto deberían existir en especies en las que se ha encontrado esta forma de comunicación, como loros y delfines, especies que por alguna razón también hemos considerado como inteligentes. Volvemos entonces al principio: ¿qué se necesita para decir que un chimpancé es más inteligente que un loro? Si la visión cognitiva de la mente es apropiada y la distinción entre los niveles de conocimiento y formal es útil, entonces este enfoque debería servir para diseñar experimentos y observaciones dirigidos a definir con más claridad tales diferencias entre especies. Chivi57
Referencias Bibliográficas
 
Cheney D.L. y Seyfarth R.M. 1990. How monkeys see the world. University of Chicago Press.
Christensen S.M. y Turner D.R. (eds). 1993. Folk psychology and the philosophy of mind. Lawrence Erlbaum Associates.
Dasser V. 1988. A social concept in java monkeys. Animal Behaviour.
Dyer F.C. 1994. Spatial cognition and navigation in insects. Behavioral mechanisms in evolutionary ecology. University of Chicago Press.
Gallistel R.A. 1990. The organization of learning. MIT Press.
Garcia J. y Koelling R.A. 1966. Relation of cue to consequences in avoidance learning. Psychonomic science.
Harper, D.G.C. 1982. Competitive foraging in mallards: ‘Ideal free’ ducks. Animal Behaviour.
Kamil A.C. 1994. A synthetic approach to the study of animal intelligence. Behavioral Mechanisms in Evolutionary Ecology. University of Chicago Press.
Krebs J.R. y Davies N.B. 1978. Behavioural ecology: an evolutionary approach. Blackwell Scientific Publications, Oxford.
Kroodsma D.E. y Verner J. 1987. Use of song repertoires among marsh wren populations. Auk.
Leslie, A. 1987. Pretense and representation in infancy: the origins of ‘theory of mind’. Psychological Review.
Macphail E.M. 1985. Vertebrate intelligence: the null hypothesis. Animal Intelligence. Clarendon Press, Oxford.
Perner, J. 1991. Understanding the representational mind. mit Press.
Povinelli D.J., Nelson K.E. y Boysen S. 1990. Inferences about guessing and knowing by chimpanzees (Pan troglodyte). Journal of Comparative Psychology.
Povinelli, D.J. 1994. What chimpanzees (might) know about the mind. Chimpanzee Culture. Harvard University Press.
Real, L.A. 1994. Information Processing and the Evolutionary Ecology of Cognitiva Architecture. Behavioral Mechanisms in Evolutionary Ecology. University of Chicago Press.
Seyfarth R.M. 1987. Conflict and Cooperation. Primate Societies. University of Chicago Press.
Skinner B.F. 1977. Why I am not a cognitive psychologist. Behaviorism.
De Waal. 1982. Chimpanzee Politics. Harper and Row, New York.
Gabriel Ramos Fernández
Departamento de Biología,
Universidad de Pennsylvania.

_______________________________________________________________
 

como citar este artículo

Ramos Fernández, Gabriel. (2000). Historia natural de la inteligencia. Ciencias 57, enero-marzo, 54-65. [En línea]
 
 

 

revista de cultura científica de la Facultad de Ciencias de la Universidad Nacional Autónoma de México

  portada articulo 1 portada articulo 1  
 
     
El proyecto del genoma humano
 
Ricardo Noguera Solano y Rosaura Ruiz Gutiérrez
conoce más del autor
     
 
HTML ↓
PDF Regresar al índice artículo siguiente
     
A principios de la década de los ochentas mapear y secuenciar el genoma humano en su totalidad era una idea prácticamente insoñable. Sin embargo, estas ideas se formalizaron en 1990 en uno de los proyectos más grandes de cooperación internacional, el proyecto genoma humano, el cual nos ha forzado a reflexionar no sólo en problemas técnicos y científicos, sino también en problemas éticos y morales. A pesar de los distintos enfoques en los que se puede abordar este asunto, nuestro objetivo será reflexionar sobre algunos eventos y factores que dieron forma a esta empresa internacional que en realidad es un conjunto de proyectos de muchos laboratorios alrededor del mundo que persiguen la misma finalidad: el conocimiento de nuestro genoma.
 
El surgimiento del proyecto genoma humano se sustenta en razones científicas, económicas y políticas. Desde el punto de vista científico el conocimiento del genoma humano, además de ser interesante en sí mismo, tiene un interés médico; desde el económico los avances en la biotecnología han resultado un gran negocio para las grandes transnacionales farmacéuticas, y desde el político, en el terreno internacional, Estados Unidos tiene un papel de potencia mundial no sólo por el avance del conocimiento del genoma humano, sino por la competencia con otros países, en especial con Japón. Incluso internamente en Estados Unidos vemos esta competencia política por parte del Departamento de Energía y los Institutos Nacionales de Salud por conseguir la dirección y los recursos del proyecto.
 
Antes de los avances tecnológicos el proyecto era inviable, por ello Victor A. Mckusick señalaba en 1971 la dificultad y lentitud de mapear genes humanos, por lo que hasta ese entonces no existía la intención de mapear todos. Durante muchos años sólo se mapearon genes relacionados con desórdenes genéticos, con la intención de contar con herramientas para diagnosis temprana de algunas enfermedades hereditarias. No obstante, el desarrollo de esta tradición no fue el motivo de inspiración para mapear todo el genoma humano.
 
La idea de secuenciar el genoma a gran escala se planteó en Estados Unidos en 1984, en una conferencia en Alta Utah realizada para evaluar los análisis directos de los efectos genéticos de los descendientes de japoneses que sobrevivieron a las bombas atómicas en 1945. En esa conferencia, auspiciada por el Departamento de Energía de Estados Unidos, Robert Shinsheimer (biólogo molecular y entonces rector de la Universidad de California) planteó la idea de fundar un instituto en Santa Cruz para secuenciar el genoma humano.
 
Después de la conferencia de Alta Utah la idea fue promovida por dos grupos independientes. El primero, liderado por Charles de Lisi, director de la Oficina de Investigación Sanitaria del Departamento de Energía, y el segundo, por Robert Sinsheimer.
 
De Lisi se inclinó por los mapas genéticos y propuso que esa institución aumentara su participación en las investigaciones del genoma; principalmente porque llevaba mucho tiempo interesado en la genética humana y tenía programas para examinar los efectos de la radiación y la contaminación ambiental sobre el cuerpo humano, así como proyectos para determinar la frecuencia de mutaciones en los descendientes de Hiroshima y Nagasaki, como parte de los programas de seguridad nacional de Estados Unidos. La creación de un proyecto para mapear y secuenciar el genoma parecía justificar, continuar y expandir las investigaciones genéticas en el Departamento de Energía, que también contaba con programas de investigación sobre cromosomas. La proposición de Charles de Lisi ha hecho pensar que el origen del proyecto se encuentra en los programas de salud del Departamento de Energía. Incluso en ese departamento las investigaciones sobre el genoma se titulan “Iniciativa del Genoma Humano”. Sin embargo, como ya señalamos, la propuesta que motivó la discusión surgió de Robert Sinsheimer, un científico que no era de esa institución y que tenía otros intereses.
 
Robert Sinsheimer, quien estaba al frente del segundo grupo, convocó en mayo de 1985 a una conferencia sobre genética molecular, invitando a participar a los mejores biólogos moleculares de Estados Unidos. En esa conferencia se propuso secuenciar el genoma humano completo, se consideraron los aspectos técnicos para su realización y se discutió la manera de llevar a cabo el proyecto. La conferencia no resultó como Sinsheimer pretendía (formalizar el establecimiento de un instituto para secuenciar el genoma humano y atraer inversiones a la Universidad de California), pues de dicha sesión lo que surgió fue la idea de un proyecto de grandes proporciones que estaba en la mente de algunos biólogos, como Walter Gilbert, quien más tarde se convirtió en un apasionado impulsor del proyecto. En una publicación que favorecía la realización del proyecto, Sinsheimer declaró, usando un lenguaje científico supuestamente neutro para ocultar su interés económico, que el genoma debía estudiarse porque estaba aquí, de la misma forma que estudiamos al sol o a las estrellas porque están aquí.
 
Otro factor que motivó a científicos y políticos estadounidenses, entre ellos personas relacionadas con el Departamento de Energía, fue el conocimiento de que Japón había iniciado desde 1981 un plan modesto para mejorar la tecnología de secuenciación del ácido desoxirribonucleico. Temiendo el triunfo japonés, en Estados Unidos se lanzaron a conseguir el mismo objetivo y uno más ambicioso: obtener mapas genéticos y físicos completos del genoma humano. Como veremos enseguida, no fue casual que ese departamento tomara la iniciativa con el pretexto de aprovechar las instalaciones de informática de sus proyectos militares.
Ya en el marco de una discusión abierta, en mayo de 1986 el Departamento de Energía organizó un taller en Santa Fe, Nuevo México, para discutir un proyecto de mapeo y secuenciación. En esa reunión volvieron a plantearse los problemas técnicos y los costos, dos aspectos fundamentales que se discutieron acaloradamente a favor y en contra del proyecto.
 
En ese mismo mes un nuevo evento abrió una perspectiva diferente para las investigaciones. Renatto Dulbecco, entonces presidente del Salk Institute, publicó en Science su artículo “A turning Point in Cancer Research: Sequencing the Human Genome”, en el cual defendía la secuenciación del genoma argumentando que la secuencia podría ser útil en las investigaciones del cáncer. Con esa publicación el proyecto recibió el apoyo de una parte de la comunidad médica, debido a que la información de mapas y secuencias humanas puede ser útil para la predicción, diagnóstico, prevención y terapia de cerca de cuatro mil enfermedades hereditarias, y en menor medida para las enfermedades que son resultado de la interacción del material genético y el ambiente.
 
Después de estos intentos la propuesta de mapear y secuenciar el genoma humano tomó forma en Cold Spring Harbor en 1986, pues durante el “Simposium sobre la biología molecular de Homo sapiens” Walter Gilbert y Paul Berg coordinaron una sesión titulada “Proyecto Genoma Humano”. En ese encuentro hubo escepticismo entre algunos científicos, principalmente por los costos y la carencia de una tecnología adecuada. También se cuestionó si era apropiado que el Departamento de Energía dirigiera un programa de esa naturaleza, principalmente porque el interés se había desplazado hacia el terreno médico.
 
En otra de las sesiones de ese simposio, Eiichi Soeda, científico japonés, señaló los planes de su país y de compañías como Hitachi y Fuji de invertir juntas para mejorar la tecnología de secuenciación a gran velocidad en el Instituto Riken en Tokio.
 
El interés de las compañías biotecnológicas en las investigaciones del genoma fue uno de los factores importantes que aceleró las discusiones y la decisión a favor de realizar las investigaciones tanto en Estados Unidos como en Europa. Para fortalecer esta idea, señalamos un par de ejemplos donde se muestra que tanto en el origen como en la creación y en la actual realización del proyecto hay una decisiva participación de intereses económicos.
 
Primero, la industria privada japonesa y las compañías privadas como Nippon Steel Corporation y Kawasaki, entre muchas otras, y varios bancos locales, destinan recursos económicos para estas investigaciones por la posibilidad de desarrollar máquinas de diagnóstico para el mercado médico y para cualquier empresa interesada en aplicar pruebas genéticas.
 
Segundo, a partir de 1987 se ha dado un aumento notable en el número de empresas biotecnológicas tanto en Estados Unidos, Europa y Japón. Esto ha beneficiado al proyecto pues se cuenta con mayores recursos, pero al mismo tiempo genera una serie de problemas. Muchas de estas empresas tienen acuerdos con universidades e instituciones públicas para financiar parte de las investigaciones a cambio de la comercialización de la información obtenida; como consecuencia esto restringe la libre circulación de la información y plantea el dilema de si realmente habrá un beneficio social.
 
Estas compañías tienen tal influencia en las investigaciones del genoma que algunos empresarios, entre ellos Frederick Bourke (empresario norteamericano), han considerado a la industria biotecnológica como la segunda revolución industrial. Esta influencia ha provocado fuertes discusiones, pues existe el intento de empresas e investigadores, como Craig Venter, de patentar genes humanos. Este asunto ha sido tan polémico que Watson tuvo que renunciar en 1992 a la dirección del proyecto, pues se vio involucrado en problemas de patentes de genes. Watson fue reemplazado por Francis S. Collins, quien es director actual del proyecto.
Otra de las figuras principales que impulsaron el proyecto es Renatto Dulbecco, quien ha justificado los altos costos de la medicina moderna señalando que las empresas de alguna manera deben recuperar el dinero invertido en las investigaciones.
 
En un nuevo intento por conseguir la dirección de las investigaciones, poco tiempo después del “Simposium sobre la biología molecular de Homo sapiens”, De Lisi propuso que se realizaran mapas completos del genoma antes de iniciar la secuenciación.
 
Pese a que no había una decisión oficial el Departamento de Energía inició en 1987 los trabajos para conseguir mapas de todos los cromosomas humanos, con objeto de quedarse con la dirección de las investigaciones; para ello se argumentó que dicho departamento contaba con mejores instalaciones para desarrollar el proyecto. Sin embargo, los dirigentes de los Institutos Nacionales de Salud de Estados Unidos, entre ellos James Watson, se habían convencido de que el proyecto era posible, pero no podía dejarse en manos del Departamento de Energía, sino que tenía que estar dirigido por otro grupo de científicos. A Watson le parecía que el Departamento de Energía estaba lleno de físicos y pocos biólogos, en cambio en los institutos de salud había una mayor cantidad de médicos y biólogos.
 
En un ambiente de escepticismo y competencia las ideas y propuestas del proyecto llegaron al Consejo de la Academia de Ciencia e Ingeniería en agosto de 1986. El Consejo inmediatamente convocó a una reunión en Wood Hole Massachusetts, de la que surgió un comité (Comité del Genoma Humano) con plenos poderes para examinar y decidir sobre estas investigaciones. Mientras el grupo de científicos concluía su informe, el gobierno federal decidió financiar la investigación a través de los Institutos Nacionales de Salud.
 
En febrero de 1988, después de catorce meses de estudio, el comité para analizar las propuestas propuso que se hicieran las investigaciones en un reporte de ciento dos páginas titulado “Mapeo y secuenciación del genoma humano”.
 
Posteriormente, el Consejo de la Academia de Ciencia e Ingeniería discutió las ideas del comité y propuso como primer paso hacer los mapas genéticos, al parejo de los mapas de organismos modelo, y como segunda etapa conseguir la secuenciación de los genes. Recomendó un presupuesto de doscientos millones de dólares anuales durante un periodo de quince años. Y designó el papel principal para los Institutos Nacionales de Salud en Bethesda. Ante esta decisión una parte de médicos y biólogos de los institutos de salud mostraron su oposición al proyecto, pensando que quizás no valía la pena desviar fondos hacia el proyecto descuidando otras investigaciones biológicas, principalmente con el argumento de que una secuenciación a ciegas no tenía ningún sentido.
 
Parte de la discusión entre hacer mapas genéticos (lo que querían los dirigentes del Departamento de Energía) y hacer mapas físicos (lo que querían los biólogos moleculares, como Gilbert, Watson y Sinsheimer) encierra en el fondo dos visiones encontradas de dos tradiciones científicas diferentes: la biología molecular, por un lado, que se centra en detalles particulares, y la genética, que trabaja con elementos que se puedan seguir en una población. Los genetistas apoyaban la realización de los mapas porque sostenían que los marcadores genéticos han sido más útiles para la diagnosis de desórdenes hereditarios que las secuencias mismas. En la actualidad los mapas genéticos están casi terminados, mientras que la cantidad del genoma humano secuenciado es alrededor de 85%.
 
Después de cuatro años de discusiones, en marzo de 1988 James Wyngaarden, director general de los Institutos Nacionales de Salud, anunció la creación del Instituto Nacional para las Investigaciones del Genoma Humano, y al mismo tiempo invitó a Watson a dirigir la investigación. Watson fue nombrado director asociado del Instituto Nacional de Investigaciones del Genoma el 1 de octubre de 1988. Un año después (octubre de 1989) inició su función con un grupo de asesores para organizar los trabajos. Ese mismo día, representantes del Departamento de Energía y de los Institutos Nacionales de Salud firmaron un memorándum de entendimiento, mediante el cual ambas instituciones se comprometieron a cooperar en la investigación.
 
 
Bajo estas condiciones se formó un comité integrado por miembros de las dos instituciones y por otros expertos cuyo fin era elaborar un programa para el proyecto. El comité se reunió en Cold Spring Harbor y emitió un informe conjunto que se envió al Congreso de la Nación en febrero de 1990. En él se establecían objetivos concretos que la investigación debería cumplir. El programa fue aprobado por el Congreso, destinándose doscientos millones de dólares anuales durante quince años, a partir de octubre de 1990 y hasta el 30 de septiembre del año 2005, aunque en la última modificación del plan general se propuso terminar en el año 2003 para que la fecha coincida con el cincuenta aniversario del descubrimiento de la estructura del adn en 1953.
 
La información genética que determina el desarrollo del ser humano se encuentra en los cuarenta y seis cromosomas que se hallan en el núcleo de sus células. Cuarenta y cuatro de éstos son llamados autosomas para diferenciarlos de los dos cromosomas que determinan el sexo. Cada cromosoma está formado por una larga cadena de adn consitutida por aproximadamente ciento treinta millones de pares de bases, enrrollada y empaquetada por medio de una serie de proteínas, entre las que predominan las histonas. Prácticamente toda la actividad de regulación y síntesis de proteínas está regida por estas estructuras. Sin embargo hasta hace veinte años era casi imposible establecer con precisión el cromosoma en que se encontraban los genes.
 
Los métodos para distinguir un cromosoma de otro no permitían ir muy lejos en la ubicación de los genes. El mapeo de genes ligados establece la posición de un gen en relación a otro; por medio de las proporciones fenotípicas que produce una cruza dihíbrida es posible saber si dos genes comparten un mismo cromosoma o están en dos distintos; y por su tasa de recombinación es posible estimar qué tan cerca se encuentra uno de otro, y cuando son más de dos genes, establecer sus posiciones relativas, mas no su ubicación física. Los mapas de ligamiento son un método muy útil para el estudio de genes que codifican exclusivamente una característica que varía y que ha permitido entender la transmisión de ciertas enfermedades, pero con grandes limitaciones para establecer distancias en pares de bases así como la localización precisa de genes.
 
El advenimiento de la biología molecular revolucionó por completo el estudio de la genética y muy pronto aparecieron nuevas técnicas para su desarrollo. El descubrimiento de las enzimas de restricción y el desarrollo de las técnicas de adn recombinante abrió las puertas a las elaboración de mapas de ligamiento más precisos, de mapas físicos y al conocimiento de la secuencia del adn que constituye los genes.
 
La geografía genética
 
El estudio de la secuencia de las bases de adn humano mostraba que en ella había una gran variabilidad. Al comparar el adn de un individuo con el de otro se podía observar que si bien hay zonas que se mantienen iguales, una enorme cantidad de ellas variaba aunque fuera muy ligeramente. A estas porciones se les denominó adn polimorfas. Sin embargo, las variaciones que presentaban muchas de estas regiones eran bastante estables, es decir, que en una población, de una generación a otra, sólo variaban de manera bastante limitada. El diseño de sondas de adn permitía detectar estas secuencias con cierta facilidad, lo que hizo de ellas marcadores para ubicar estas regiones en el genoma y puntos de referencia en general. Debido a que son obtenidas por medio de enzimas de restricción, se les llamó Restriction Fragment Length Polymorphisms.
El uso de estos marcadores para elaborar mapas de ligamiento resultó ser de gran utilidad, ya que hacían posible establecer la distancia génica entre un marcador y un gen que codificara para alguna caracaterística fenotípica, entre dos marcadores, o determinar con precisión la ubicación de un marcador en un cromosoma. Así, por ejemplo, si en un mapa de ligamiento se estableciera que un gen determinado se encuentra entre dos marcadores, entonces es posible conocer su ubicación analizando la tira de adn que va de un marcador a otro.
 
El primer objetivo de la fase inicial del programa es la elaboración de mapas de ligamiento de cada uno de los cromosomas humanos, que contengan marcadores de adn polimorfos a una distancia de dos a cinco centimorgan, lo que corresponde aproximadamente a distancias físicas de dos a cinco millones de pares de bases. El fin es contar con una serie de puntos de referencia para poder localizar genes de interés, en pocas palabras, que los investigadores puedan tener puntos bien establecidos que les permitan transitar de manera más accesible por la intrincada geografía de los cromosomas.
 
Aun cuando la precisión de este tipo de mapas debe llegar a ser de un marcador por cada micromorgan de distancia —objetivo contemplado en la segunda fase del programa—, la elaboración en paralelo de un mapa físico, esto es, en el que la distancia entre dos puntos se expresa en número de pares de bases, permite la sobreposición de uno al otro, asociando cada uno de los locus marcados en el mapa de ligamiento a un locus específico del mapa físico, con lo cual se gana en información y exactitud.
 
En la elaboración de un mapa físico de un cromosoma se emplean por lo tanto distancias absolutas y no relativas, y éste debe estar compuesto por la cadena de adn completa que lo constituye, de principio a fin, esto es, cerca de ciento treinta millones de pares de bases. El mapa físico del genoma humano debe comprender la cartografía completa de los veinticuatro cromosomas lo que permitirá cualquier gen de cualquier cromosoma con extrema precisión.
 
Este tipo de mapas se consituyen a partir de la fragmentación de los fragmentos de adn contenidos en las bibliotecas génicas. Así, es posible tomar el adn de alguna parte de un cromosoma, copiarlo por medio de un vector (una bacteria o un virus), aplicarle una enzima de restricción y después pasar los fragmentos por electroforesis, con lo cual se obtienen los llamados fragmentos de restricción. La distancia entre cada uno de los sitios de restricción es dada en pares de bases. Cada uno de los fragmentos se sobrepone a aquél con el que comparte una porción similar o varias. De esta manera se llega a formar un fragmento de adn de mayor tamaño, que a su vez se puede unir a otro u otros más, dando un fragmento final en el que, por medio de marcadores, es posible ubicar genes y finalmente conocer la secuencia de sus nucleótidos con precisión.
Tal vez una de las limitantes para obtener mapas completos por este método es que, con mucha frecuencia, quedan huecos que no son fáciles de llenar, a pesar de las técnicas desarrolladas para ello. En el caso del genoma humano, cuyo adn contiene elementos muy repetitivos, la sobreposición resuta aún más difícil, ya que estos fragmentos llegan a perderse en el proceso de clonación.
 
Uno de los recursos inventados para hacer frente a estos problemas son los marcadores sts (Sequenced-Tagged-Sites), que consisten en una pequeña porción de adn (de doscientos a trescientos pares de bases) cuya secuencia no se encuentra en ninguna otra parte del genoma. Usados como promotores en pcr, es posible obtener largas cadenas de adn flanqueadas por dos sitios de fácil ubicación por su secuencia única. Al aplicar una sonda con esta secuencia a fragmentos de adn unidos por medio de enzimas de restricción, se pueden llenar los huecos que quedaban, ya que, por su longitud y sitio preciso, es posible lograr la unión de varios fragmentos. El empleo de sts en la elaboración de mapas de ligamiento y en mapas físicos es una parte central de la primera fase del proyecto genoma humano.
 
Objetivo final: secuenciación total
 
Una vez que se ha completado el mapa físico de alguna región de un cromosoma, el largo fragmento de adn se corta, se procede a una nueva clonación o subclonación con un vector, y se copia varias veces para proceder a su secuenciación base por base. Este procedimiento ordenado de secuenciación región por región, juntando trozos para reconstituir el orden de un cromosoma y luego de otro, hasta eventualmente secuenciar la totalidad del genoma, es muy preciso, pero es un proyecto laborioso y largo.
 
En 1998, Craig Venter, propuso una nueva metodología y retó a los investigadores del proyecto genoma humano, diciendo que su compañía, armada de secuenciadores automáticos y computadoras, terminaría antes la secuenciación total. Su estrategia consiste en secuenciar fragmentos aleatorios de adn —en contraposición al empleo de bibliotecas de genes ordenadas en mapas físicos— y utilizando algoritmos, recomponer el orden. Este método fue muy criticado en un inicio pues dada la conformación del genoma había muchas posibles fuentes de error. Sin embargo, para corroborar su información, Venter cuenta también con la información generada por el proyecto genoma humano vertida en una base de datos pública, llamada el GenBank. De esta manera, le es posible cotejar sus datos con aquellos generados por el proyecto, y lo que parecía imposible, gracias a las computadoras y las bases de datos, ha resultado ser una metodología rápida y eficaz.
El estudio del genoma humano
En el plan de trabajo de Estados Unidos se establecieron varios centros para llevar a cabo la investigación, tanto en laboratorios nacionales como en universidades de todo el país y desde luego en las instalaciones del Departamento de Energía en los Alamos, Nuevo México, y en el Instituto Nacional de Investigaciones del Genoma Humano en Bethesda, Maryland.
 
De esta manera el Proyecto Genoma Humano en Estados Unidos quedó como una investigación coordinada, con el objetivo de producir en detalle el mapa genético y físico de cada uno de los veintidós cromosomas humanos y los cromosomas sexuales (x/y).
 
La participación de otros países
 
La comunidad científica internacional mostró interés en participar en las investigaciones, por lo que en 1990 trescientos científicos de treinta y cinco países se reunieron en París, Francia, en la sede central de la unesco, para discutir la importancia de una cooperación internacional en el proyecto genoma humano. En esa reunión Watson aclaró que los costos podían reducirse si había una cooperación internacional. Además, no consideraba adecuado que los datos se compartieran con naciones que no participaran en la medida de sus economías. En esto había una amenaza dirigida principalmente a los científicos japoneses, quienes tenían planeado seguir con sus programas de perfeccionamiento de tecnología de secuenciación.
 
La iniciativa de Estados Unidos fue seguida por otros países desarrollados, como el Reino Unido, Japón, los Países Bajos, Escandinavia, Rusia, Suecia, Canadá, Francia, Italia, Alemania, Hungría, Suiza, Portugal, España, Dinamarca y Canadá, que estaban motivados principalmente por la preocupación de no quedar rezagados en las investigaciones, sobre todo por la desventaja biotecnológica y económica que esto implica.
 
En 1991 la Comunidad Europea lanzó una propuesta para la región, buscando abatir el costo de las investigaciones a través de una mayor colaboración, cooperación y coordinación. Para conseguir esto se propuso que la Fundación de Ciencia Europea coordinara las investigaciones en este continente.
 
Antes de 1991 algunas naciones europeas habían iniciado sus programas de investigación. Por ejemplo, el Reino Unido desarrolló una propuesta en 1986 sugerida por Walt Bodmer y Sydney Brenner, dos biólogos moleculares de Inglaterra que estuvieron presentes en el “Simposium sobre la biología molecular de Homo sapiens” y en otras conferencias realizadas en torno al tema. Su propuesta consistía en un programa que involucraba al Consejo de Investigación Médica y a la Fundación Imperial para las Investigaciones del Cáncer.
 
Por su parte, Francia decidió en 1990 crear su propio programa de investigación, logrando una participación importante en las investigaciones del genoma humano a través del Centro de Estudio del Polimorfismo Humano, en colaboración con Estados Unidos. También cuenta con industrias privadas como el Centro Généthon.
 
En Italia la discusión en torno a un programa de investigación sobre el genoma inició en 1987 promovida por Renatto Dulbecco a través del Consejo de Investigación Italiano. El proyecto italiano fue pensado para una colaboración de varias unidades de este centro y diferentes universidades e institutos a lo largo de Italia.
 
Alemania, por su parte, participa en las investigaciones del genoma humano principalmente a través del Centro de Investigación del Cáncer de Alemania, en Heidelberg. Esta institución funciona como un centro de coordinación en la comunidad europea, debido a que cuenta con una base de almacenamiento de datos de secuencias.
 
Japón, como mencionamos anteriormente, ha trabajado desde principio de los ochentas en la fabricación de tecnología de secuenciación. Sin embargo, fue uno de los últimos países industrializados en establecer un programa nacional coordinado de investigación sobre el genoma humano, debido en parte a que los científicos japoneses no mostraban mucho interés en hacer mapas genéticos y físicos del genoma. Como ya mencionamos anteriormente, las industrias japonesas estaban interesadas en invertir sólo en la tecnología de secuenciación. Este interés era compartido por algunos científicos japoneses, entre ellos Akiyoshi Wada, de la Universidad de Tokio, quien propuso establecer una fábrica de secuenciación de adn en Japón. Wada estaba convencido de que esta actividad no era propia de científicos, sino de técnicos y mecánicos bien entrenados.
 
Para terminar la visión de lo que fue en su origen y la posterior difusión de la idea de conseguir mapas genéticos y físicos completos del genoma hasta llegar a consolidarse como una empresa internacional, mencionaremos dos organizaciones involucradas en la organización y coordinación de las investigaciones entre los países participantes.
 
La primera es la Organización Internacional del Genoma (Hugo), creada como un foro internacional en la primera conferencia de Cold Spring Harbor sobre el mapeo y la secuenciación, que se llevó a cabo el 29 de abril de 1988.
 
La segunda es la unesco, pues su director general, el doctor Federico Mayor, reunió en octubre de 1988, en Valencia, España, a un grupo de asesores científicos para considerar el papel de la unesco en el proyecto genoma humano; la primera conferencia sobre este tema se celebró en París en febrero de 1989. En ella los participantes acordaron que la unesco ayudaría facilitando la cooperación internacional; particularmente hacia los países en desarrollo, en donde era más apremiante.
 
El proyecto en América Latina
 
Debido a que la unesco no podría cubrir los programas de muchos grupos y países, se pensó agruparlos por regiones, en grandes programas. Uno de ellos es el Programa Latinoamericano del Genoma Humano, fundado bajo la iniciativa de la Red Latinoamericana de Ciencias Biológicas durante el simposium “Genética molecular y el proyecto genoma humano: perspectivas para América Latina”, realizado en junio de 1990 en Santiago de Chile.
 
Este proyecto está integrado por Chile, Brasil, México, Venezuela, Costa Rica, Colombia, Cuba y otros países de la región. Con este mecanismo de programas regionales se evitan traslapamientos con otros proyectos; además, permite una comunicación eficaz entre la unesco y los países en vías de desarrollo.
 
Bajo este interés, la unesco ha promovido investigaciones sobre el genoma en China, India y Sudáfrica.
 
A pesar de los esfuerzos de la unesco existe una evidente y tremenda asimetría entre las investigaciones de los países desarrollados y los subdesarrollados. Estos últimos participan en las investigaciones aportando acervos de información genética de poblaciones que presentan problemas de enfermedades hereditarias, con datos obtenidos a través de análisis de genealogías y en una mínima porción de secuenciación de genes.
 
Las aristas del proyecto
 
Para terminar esta breve descripción del origen del proyecto señalaremos tres asuntos que han estado en el centro de los debates: los beneficios médicos, el presupuesto destinado a estas investigaciones y los temores sobre el uso de la información genética que podría servir para justificar la discriminación en proporciones inimaginadas.
 
Desde el punto de vista científico representa un gran avance en la comprensión de la naturaleza de los seres vivos, pero es en la medicina donde habrá mayores beneficios. La medicina tradicionalmente se basa en la prevención, detección y cura de la enfermedad. La medicina moderna, influida profundamente por la biología, está encaminada a enfrentar las enfermedades genéticas por medio de la predicción. Una de las promesas de los programas de investigación sobre el genoma es mejorar la habilidad para comprender las enfermedades genéticas y obtener conocimientos para tratar pacientes con esas anormalidades. Actualmente existen algunos tratamientos en el terreno experimental.
 
La información de mapas y secuencias humanas será útil principalmente en la predicción, diagnóstico, prevención y terapia. En la predicción, la información de los mapas puede ser utilizada para predecir el riesgo individual de heredar una enfermedad genética. En el diagnóstico, un gran número de enfermedades genéticas puede ser detectado mediante pruebas genéticas. En la terapia o tratamiento la identificación de genes que provocan enfermedades y sus proteínas puede posibilitar la creación de terapias efectivas. El conocimiento de estos genes y sus proteínas ayudará a perfeccionar las medidas preventivas, basadas sobre todo en dietas o administración de sustancias que retarden o bloqueen los efectos de genes causantes de enfermedades. Un caso ilustrativo que se ha conseguido es poder transplantar médula a niños a los que se les ha detectado el gen ada, causante de 30% de los casos de la enfermedad de immunodeficiencia severa combinada; la efectividad es de 90%.
 
Por otra parte, es indudablemente un gran avance que se puedan detectar genes deletéreos o anormalidades cromosómicas en embriones de corta edad, lo que permite a los padres tomar la decisión de interrumpir el embarazo. Además de errores grandes como la trisomía 21 o el síndrome de Turner, hoy se pueden detectar genes como el de Huntington; el gen que provoca la galactosemia; el gen causante de la acondroplasia, y muchos más. Un gran problema es que toda esta medicina tiene un costo altísimo, pues tan sólo para la detección de genes de alguna enfermedad el costo es de varios miles de dólares; esta situación ha llevado a considerar que el beneficio social es muy limitado, sobre todo si nos damos cuenta de que el costo del mapeo y de la secuenciación de genoma humano será aportado principalmente por presupuesto público (tanto en los países desarrollados como en los países en vías de desarrollo) y en menor grado por la iniciativa privada .
 
Una de las grandes objeciones a este proyecto fue si tenía sentido secuenciar todo sin conocerlo, pensando que el argumento de beneficio médico era solamente utilizado para desviar fondos de investigaciones o programas sociales de atención y beneficio médico que tienen un impacto más inmediato. Sin embargo, pese a que este proyecto tiene un costo demasiado elevado y una utilidad práctica que no resulta nada sencillo aplicar, para muchos defensores del proyecto no existía tal desvío tremendo de fondos, contrargumentando, por ejemplo, que el proyecto costará aproximadamente de tres mil a cinco mil millones de dólares, mucho menos que otras investigaciones científicas como la estrategia de defensa nacional de Estados Unidos, que recibió tan sólo en 1993 un presupuesto de tres mil ochocientos millones de dólares, mientras que la asignación para el proyecto en ese mismo año fue de ciento setenta y un millones de dólares. La misma situación se repite en muchos países donde los recursos destinados a proyectos o programas militares supera en mucho los recursos destinados a las investigaciones del genoma humano.
 
Por último, ha surgido un fuerte temor de problemas sociales relacionados con la discriminación, debido a la presencia de una ideología reduccionista en el marco general de las investigaciones del genoma humano; una visión que no sólo se percibe dentro de la comunidad científica, sino que trasciende hacia la sociedad. Esta ideología ha surgido porque la metodología de investigación utilizada en la biología molecular (el reduccionismo metodológico o explicativo, que abarca cuestiones referentes a la estrategia de investigación y a la adquisición de conocimientos) se ha convertido en una forma de “reduccionismo genético”, al afirmar que todas las propiedades biológicas de un organismo pueden ser explicadas y determinadas únicamente por sus genes.
 
De esta forma las explicaciones reduccionistas como una estrategia de investigación han sido transformadas en una ideología por los proponentes del proyecto. El empleo del reduccionismo en la ciencia en casos como el que nos ocupa ha sido traducido en una visión metafísica, pues, por ejemplo, algunos biólogos moleculares han dicho que todos los problemas biológicos son mejor enfocados con el estudio de los genes. Muchos dirigentes de la revolución en biología molecular han reivindicado todo papel explicativo para la genética y muchos de ellos están asociados con el inicio del proyecto. El problema es creer que en las secuencias genéticas está la clave para construir un ser humano, pero un ser humano es resultado de una fina interacción de un genoma y un ambiente determinado. Así como habrá diferencias si cambia el genoma las habrá si cambia el ambiente; lo más importante es entender que a un ser humano no lo define solamente su estructura física, lo define, ante todo, su manera de pensar, su manera de actuar, su forma de ser humano. Si no se toma en cuenta lo antes señalado existe el riesgo de problemas sociales de graves consecuencias. La información actual sobre el genoma humano nos ha dado las bases para una nueva práctica médica; de la misma manera nos ha dado las bases para argumentar, justificar y aumentar la discriminación, por ejemplo, en la contratación de empleados o en la venta de seguros médicos que podrían negarse a personas con aparentes problemas genéticos.
 
La información de las secuencias puede tener un impacto positivo en la ciencia, en la práctica médica y en el terreno biotecnológico con aplicaciones en la agricultura y en la cría de animales de importancia económica. Sin embargo, no debemos olvidarnos de las lecciones de la historia sobre el mal uso que a veces se le da al conocimiento científico, debido a que la información obtenida puede usarse inadecuadamente en contra de sectores de la población humana (principalmente contra los grupos que por su raza o clase social siempre han sufrido discriminación).
 
La razón de este temor es, por un lado, la existencia de una concepción equivocada del genoma; la creencia de que el conocimiento de la información genética es suficiente para explicar y definir todo lo que un ser humano representa, biológica, estructural, intelectual y emocionalmente. Por otro lado, la causa que originó y que le ha dado impulso a estas investigaciones no es precisamente el convencimiento de un beneficio social, sino en gran medida es consecuencia de la competencia económica y comercial, en donde las partes que intentan salir mejor beneficiadas son las industrias biotecnológicas de los países desarrollados donde se realiza la mayoría de la investigación.
Referencias bibliográficas
 
Bishop, Jerry. 1992. Genoma: la historia de la aventura científica más asombrosa de nuestro tiempo, el intento de trazar el mapa genético del cuerpo humano. Plaza & Janes 401 pp.
Engel, L. W. 1993. “The Human Genome Project: History, Goals and Progress to Date”, Arch. Pathol. Lab. Med., 117, pp. 459-465.
Haq, M. M. 1993. “Medical Genetics and the Human Genome Project: a historical review”, Texas Medicine/the journal, 89(3), pp. 68-73.
Keleher, Cynthia. 1993. “Translating the genetics library: The goal, metods and applications of the Human Genome Project”, Bull. Med. Libr. Assoc., 81(3), pp. 277-277.
Leder, Phillip. 1990. “Can The Human Genome Project Be Saved From its Critics... and Itself?”, Cell, 63, pp. 1-3.
Lee, Thomas F. 1994. El Proyecto Genoma Humano. Gedisa, Barcelona.
Noguera Solano, Ricardo y Lucia Ramírez Escobar. 1998, El proyecto genoma humano: una aproximación histórica. Tesis de Licenciatura, Facultad de Ciencias, unam, 85 pp.
Oliva, Virgil Rafael. 1996. Genoma humano. Barcelona, 224 pp.
Watson, J. D. 1990. “The Human Genome Project: Past, Present and Future”, Science, 248, pp. 44-48.
Watson and Cook-Deegan. 1991 “Origins of the Human Genome Project”, faseb, J 5, pp. 8-11.
Wilkie, Tom. 1993. El conocimiento peligroso: el proyecto genoma humano y sus implicaciones. Faber and Faber.
Ricardo Noguera Solano
Facultad de Ciencias,
Universidad Nacional Autónoma de México.
 
 
 
Rosaura Ruiz Gutiérrez
Facultad de Ciencias,
Universidad Nacional Autónoma de México.
flechavolver58   Regresar al índice artículo siguiente
revista de cultura científica de la Facultad de Ciencias de la Universidad Nacional Autónoma de México

  portada articulo 1 portada articulo 1  
 
     
La primera cátedra de Ecología
 
Carlos Vázquez Yanes
conoce más del autor
     
 
HTML ↓
PDF Regresar al índice artículo siguiente
     
En nuestros días, la palabra ecología, bien o mal entendida, está en boca de muchos sabios o ignorantes del mundo. Incluso, hoy por hoy, abundan los que se dicen “ecologistas”, que algunas veces dan la impresión de ser el equivalente en biología a lo que los astrólogos son a los astrónomos: los primeros confunden el pensamiento mágico con el científico. Este auge de la ecología es relativamente reciente; no hace mucho tiempo, el tema en nuestra universidad no era siquiera objeto de un curso especializado de la carrera de biólogo.
Veamos algunos aspectos del origen de este curso de acuerdo a mi propia experiencia durante mis estudios para obtener el título de biólogo. Cuando cursaba el tercer año de la carrera, en 1965, me di cuenta que entre las materias optativas ofrecidas por la Facultad se encontraba la de ecología. En esos tiempos, la impartía el Dr. Arturo Gómez Pompa, quien tenía fama entre sus discípulos de 1964 de dar un excelente curso, muy actualizado, pues acababa de regresar de una larga estancia en la Universidad de Harvard, en donde había disfrutado de una de las prestigiosas becas Guggenheim durante 1963. Actualmente, el Dr. Gómez Pompa es uno de esos valiosos cerebros mexicanos que trabajan en el extranjero, en la Universidad de California, en Riverside.
Por dificultades con el calendario escolar, no pude inscribirme en la materia durante 1965 y la dejé para mi último año de estudios. En 1966, el Dr. Gómez Pompa dejó el curso de Ecología para impartir la clase de Botánica iv a nuestra generación. La  materia  de Ecología quedó vacante, así que un grupo de alumnos interesados en ella, le pedimos al Dr. Juan Luis Cifuentes Lemus que la impartiera. El profesor Cifuentes, como todos los que fuimos sus agradecidos alumnos le llamamos todavía, aceptó gentilmente, evitando así que nos quedásemos sin tomar la materia, pero nos advirtió que nosotros tendríamos que preparar muchas de las lecciones, lo cual aceptamos gustosamente.
Gracias al profesor Cifuentes pudimos enterarnos del origen de la materia en la Facultad de Ciencias. Ésta fue introducida al plan de estudios de la carrera de biólogo por sugerencia del Dr. Enrique Rioja Lo Bianco,1 a mediados de los años cincuenta. El profesor Rioja era un exiliado español especializado en zoología de invertebrados marinos e hidrobiología, que llegó a México después de la Guerra Civil en España. En Europa había llegado a ser director de la prestigiada Estación Zoológica de Nápoles, Italia, en donde tuvo contacto con el trabajo de reconocidos pioneros de la ecología, como Vito Volterra, famoso por sus modelos ya clásicos en ecología de poblaciones de peces. En México, el Dr. Rioja fue investigador del Instituto de Biología de la unam e impartió la materia de Ecología en el posgrado de biología, y posteriormente en la licenciatura, hasta que enfermó gravemente en 1963. Su muerte ocurrió ese mismo año.
Así, vemos que la enseñanza de la Ecología como una disciplina independiente en la Facultad de Ciencias de la unam, sólo se inició hasta los años cincuenta. No he recabado información precisa del año en que el Dr. Rioja comenzó a impartir la cátedra de Ecología, aunque tengo noticia que esto ocurrió a partir del cambio del curriculum que tuvo lugar durante los 50. ¡Antes de esa época no existía la clase!
Durante la escritura de esta nota, me comuniqué vía correo electrónico con el Dr. Arturo Gómez Pompa a Riverside, California. Transcribo aquí, en sus propias palabras, algunos fragmentos de la comunicación que me envió:“Durante los años 50, el Dr. Rioja impartía cursos de ecología en el doctorado. Yo tomé dos cursos con él y tuve la oportunidad de tener una magnífica relación. En ese tiempo yo empezaba mis estudios en la ecología de las dioscóreas, asesorado por el Dr. Faustino Miranda.
”Lamentablemente, el Dr. Rioja enfermó gravemente, y ya desde el hospital, me mandó llamar para invitarme a que lo sustituyera dando la clase de Ecología. Me dio terror la idea de sustituir sus increíbles clases llenas de sabiduría, al estilo de los grandes naturalistas académicos europeos. Él me animó y me dijo que podía venir a discutir con él al hospital cada vez que yo quisiera. Así lo hice, y de él aprendí muchísimo. En especial, a controlar el nerviosismo de dar la clase. Recuerdo que una vez le platiqué de mi nerviosismo, y que en las noches antes de la clase casi no podía dormir. Él me dijo que era buena señal que me preocupara, ¡que con el tiempo eso se corregía! ¡Que a él también le temblaban las piernas cuando caminaba rumbo al salón! No sé si me dijo la verdad, pero a partir de ese momento me tranquilicé. Algo más que hice  para tranquilizarme fue, entre otras cosas, llevar a los estudiantes al campo y mostrarles lo que yo hacía”.
Algunos de mis compañeros y yo tuvimos la fortuna de conocer personalmente al Dr. Rioja durante el primer año de la carrera, aunque desgraciadamente esto ocurrió en 1963, cuando ya se encontraba internado en el Hospital Español, transitando penosamente por la etapa terminal de su enfermedad. El profesor Cifuentes fue quien nos sugirió la idea de visitarlo y nos acompañó a verlo. Él pensaba que al Dr. Rioja le daría un gusto muy grande el saber que ya contaba con nietos académicos en cuya cabeza rondaba la idea de estudiar ecología. Al salir de su habitación todos pensamos que efectivamente así fue.


En nuestros días, la palabra ecología, bien o mal entendida, está en boca de muchos sabios o ignorantes del mundo. Incluso, hoy por hoy, abundan los que se dicen “ecologistas”, que algunas veces dan la impresión de ser el equivalente en biología a lo que los astrólogos son a los astrónomos: los primeros confunden el pensamiento mágico con el científico. Este auge de la ecología es relativamente reciente; no hace mucho tiempo, el tema en nuestra universidad no era siquiera objeto de un curso especializado de la carrera de biólogo.
Veamos algunos aspectos del origen de este curso de acuerdo a mi propia experiencia durante mis estudios para obtener el título de biólogo. Cuando cursaba el tercer año de la carrera, en 1965, me di cuenta que entre las materias optativas ofrecidas por la Facultad se encontraba la de ecología. En esos tiempos, la impartía el Dr. Arturo Gómez Pompa, quien tenía fama entre sus discípulos de 1964 de dar un excelente curso, muy actualizado, pues acababa de regresar de una larga estancia en la Universidad de Harvard, en donde había disfrutado de una de las prestigiosas becas Guggenheim durante 1963. Actualmente, el Dr. Gómez Pompa es uno de esos valiosos cerebros mexicanos que trabajan en el extranjero, en la Universidad de California, en Riverside.
Por dificultades con el calendario escolar, no pude inscribirme en la materia durante 1965 y la dejé para mi último año de estudios. En 1966, el Dr. Gómez Pompa dejó el curso de Ecología para impartir la clase de Botánica iv a nuestra generación. La  materia  de Ecología quedó vacante, así que un grupo de alumnos interesados en ella, le pedimos al Dr. Juan Luis Cifuentes Lemus que la impartiera. El profesor Cifuentes, como todos los que fuimos sus agradecidos alumnos le llamamos todavía, aceptó gentilmente, evitando así que nos quedásemos sin tomar la materia, pero nos advirtió que nosotros tendríamos que preparar muchas de las lecciones, lo cual aceptamos gustosamente.
Gracias al profesor Cifuentes pudimos enterarnos del origen de la materia en la Facultad de Ciencias. Ésta fue introducida al plan de estudios de la carrera de biólogo por sugerencia del Dr. Enrique Rioja Lo Bianco,1 a mediados de los años cincuenta. El profesor Rioja era un exiliado español especializado en zoología de invertebrados marinos e hidrobiología, que llegó a México después de la Guerra Civil en España. En Europa había llegado a ser director de la prestigiada Estación Zoológica de Nápoles, Italia, en donde tuvo contacto con el trabajo de reconocidos pioneros de la ecología, como Vito Volterra, famoso por sus modelos ya clásicos en ecología de poblaciones de peces. En México, el Dr. Rioja fue investigador del Instituto de Biología de la unam e impartió la materia de Ecología en el posgrado de biología, y posteriormente en la licenciatura, hasta que enfermó gravemente en 1963. Su muerte ocurrió ese mismo año.
Así, vemos que la enseñanza de la Ecología como una disciplina independiente en la Facultad de Ciencias de la unam, sólo se inició hasta los años cincuenta. No he recabado información precisa del año en que el Dr. Rioja comenzó a impartir la cátedra de Ecología, aunque tengo noticia que esto ocurrió a partir del cambio del curriculum que tuvo lugar durante los 50. ¡Antes de esa época no existía la clase!
Durante la escritura de esta nota, me comuniqué vía correo electrónico con el Dr. Arturo Gómez Pompa a Riverside, California. Transcribo aquí, en sus propias palabras, algunos fragmentos de la comunicación que me envió:“Durante los años 50, el Dr. Rioja impartía cursos de ecología en el doctorado. Yo tomé dos cursos con él y tuve la oportunidad de tener una magnífica relación. En ese tiempo yo empezaba mis estudios en la ecología de las dioscóreas, asesorado por el Dr. Faustino Miranda.
”Lamentablemente, el Dr. Rioja enfermó gravemente, y ya desde el hospital, me mandó llamar para invitarme a que lo sustituyera dando la clase de Ecología. Me dio terror la idea de sustituir sus increíbles clases llenas de sabiduría, al estilo de los grandes naturalistas académicos europeos. Él me animó y me dijo que podía venir a discutir con él al hospital cada vez que yo quisiera. Así lo hice, y de él aprendí muchísimo. En especial, a controlar el nerviosismo de dar la clase. Recuerdo que una vez le platiqué de mi nerviosismo, y que en las noches antes de la clase casi no podía dormir. Él me dijo que era buena señal que me preocupara, ¡que con el tiempo eso se corregía! ¡Que a él también le temblaban las piernas cuando caminaba rumbo al salón! No sé si me dijo la verdad, pero a partir de ese momento me tranquilicé. Algo más que hice  para tranquilizarme fue, entre otras cosas, llevar a los estudiantes al campo y mostrarles lo que yo hacía”.
Algunos de mis compañeros y yo tuvimos la fortuna de conocer personalmente al Dr. Rioja durante el primer año de la carrera, aunque desgraciadamente esto ocurrió en 1963, cuando ya se encontraba internado en el Hospital Español, transitando penosamente por la etapa terminal de su enfermedad. El profesor Cifuentes fue quien nos sugirió la idea de visitarlo y nos acompañó a verlo. Él pensaba que al Dr. Rioja le daría un gusto muy grande el saber que ya contaba con nietos académicos en cuya cabeza rondaba la idea de estudiar ecología. Al salir de su habitación todos pensamos que efectivamente así fue.

Referencias.
1. Para obtener más información acerca de la vida y obra de Enrique Rioja Lo Bianco es muy recomendable la lectura del artículo de Cifuentes Lemus, J. L. 1994. “Enrique Rioja Lo Bianco (1895-1963)”. Revista Universidad de México.
2. Margalef, R. 1974. Ecología. Ediciones Omega, Barcelona.
3. Para conocer más de este científico es recomendable la lectura del artículo de Franco Baqueiro, M. 1994. “Faustino Miranda González (1905-1964)”. Revista Universidad de México.
Carlos Vázquez-Yanes†.
Instituto de Ecología,
Universidad Nacional Autónoma de México.
flechavolver58
 
Regresar al índice artículo siguiente

revista de cultura científica de la Facultad de Ciencias de la Universidad Nacional Autónoma de México

  portada articulo 1 portada articulo 1  
 
     
El proyecto del genoma humano
 
Ricardo Noguera Solano y Rosaura Ruiz Gutiérrez
conoce más del autor
     
 
HTML ↓
PDF Regresar al índice artículo siguiente
     
A principios de la década de los ochentas mapear y secuenciar el genoma humano en su totalidad era una idea prácticamente insoñable. Sin embargo, estas ideas se formalizaron en 1990 en uno de los proyectos más grandes de cooperación internacional, el proyecto genoma humano, el cual nos ha forzado a reflexionar no sólo en problemas técnicos y científicos, sino también en problemas éticos y morales. A pesar de los distintos enfoques en los que se puede abordar este asunto, nuestro objetivo será reflexionar sobre algunos eventos y factores que dieron forma a esta empresa internacional que en realidad es un conjunto de proyectos de muchos laboratorios alrededor del mundo que persiguen la misma finalidad: el conocimiento de nuestro genoma.
 
El surgimiento del proyecto genoma humano se sustenta en razones científicas, económicas y políticas. Desde el punto de vista científico el conocimiento del genoma humano, además de ser interesante en sí mismo, tiene un interés médico; desde el económico los avances en la biotecnología han resultado un gran negocio para las grandes transnacionales farmacéuticas, y desde el político, en el terreno internacional, Estados Unidos tiene un papel de potencia mundial no sólo por el avance del conocimiento del genoma humano, sino por la competencia con otros países, en especial con Japón. Incluso internamente en Estados Unidos vemos esta competencia política por parte del Departamento de Energía y los Institutos Nacionales de Salud por conseguir la dirección y los recursos del proyecto.
 
Antes de los avances tecnológicos el proyecto era inviable, por ello Victor A. Mckusick señalaba en 1971 la dificultad y lentitud de mapear genes humanos, por lo que hasta ese entonces no existía la intención de mapear todos. Durante muchos años sólo se mapearon genes relacionados con desórdenes genéticos, con la intención de contar con herramientas para diagnosis temprana de algunas enfermedades hereditarias. No obstante, el desarrollo de esta tradición no fue el motivo de inspiración para mapear todo el genoma humano.
 
La idea de secuenciar el genoma a gran escala se planteó en Estados Unidos en 1984, en una conferencia en Alta Utah realizada para evaluar los análisis directos de los efectos genéticos de los descendientes de japoneses que sobrevivieron a las bombas atómicas en 1945. En esa conferencia, auspiciada por el Departamento de Energía de Estados Unidos, Robert Shinsheimer (biólogo molecular y entonces rector de la Universidad de California) planteó la idea de fundar un instituto en Santa Cruz para secuenciar el genoma humano.
 
Después de la conferencia de Alta Utah la idea fue promovida por dos grupos independientes. El primero, liderado por Charles de Lisi, director de la Oficina de Investigación Sanitaria del Departamento de Energía, y el segundo, por Robert Sinsheimer.
 
De Lisi se inclinó por los mapas genéticos y propuso que esa institución aumentara su participación en las investigaciones del genoma; principalmente porque llevaba mucho tiempo interesado en la genética humana y tenía programas para examinar los efectos de la radiación y la contaminación ambiental sobre el cuerpo humano, así como proyectos para determinar la frecuencia de mutaciones en los descendientes de Hiroshima y Nagasaki, como parte de los programas de seguridad nacional de Estados Unidos. La creación de un proyecto para mapear y secuenciar el genoma parecía justificar, continuar y expandir las investigaciones genéticas en el Departamento de Energía, que también contaba con programas de investigación sobre cromosomas. La proposición de Charles de Lisi ha hecho pensar que el origen del proyecto se encuentra en los programas de salud del Departamento de Energía. Incluso en ese departamento las investigaciones sobre el genoma se titulan “Iniciativa del Genoma Humano”. Sin embargo, como ya señalamos, la propuesta que motivó la discusión surgió de Robert Sinsheimer, un científico que no era de esa institución y que tenía otros intereses.
 
Robert Sinsheimer, quien estaba al frente del segundo grupo, convocó en mayo de 1985 a una conferencia sobre genética molecular, invitando a participar a los mejores biólogos moleculares de Estados Unidos. En esa conferencia se propuso secuenciar el genoma humano completo, se consideraron los aspectos técnicos para su realización y se discutió la manera de llevar a cabo el proyecto. La conferencia no resultó como Sinsheimer pretendía (formalizar el establecimiento de un instituto para secuenciar el genoma humano y atraer inversiones a la Universidad de California), pues de dicha sesión lo que surgió fue la idea de un proyecto de grandes proporciones que estaba en la mente de algunos biólogos, como Walter Gilbert, quien más tarde se convirtió en un apasionado impulsor del proyecto. En una publicación que favorecía la realización del proyecto, Sinsheimer declaró, usando un lenguaje científico supuestamente neutro para ocultar su interés económico, que el genoma debía estudiarse porque estaba aquí, de la misma forma que estudiamos al sol o a las estrellas porque están aquí.
 
Otro factor que motivó a científicos y políticos estadounidenses, entre ellos personas relacionadas con el Departamento de Energía, fue el conocimiento de que Japón había iniciado desde 1981 un plan modesto para mejorar la tecnología de secuenciación del ácido desoxirribonucleico. Temiendo el triunfo japonés, en Estados Unidos se lanzaron a conseguir el mismo objetivo y uno más ambicioso: obtener mapas genéticos y físicos completos del genoma humano. Como veremos enseguida, no fue casual que ese departamento tomara la iniciativa con el pretexto de aprovechar las instalaciones de informática de sus proyectos militares.
Ya en el marco de una discusión abierta, en mayo de 1986 el Departamento de Energía organizó un taller en Santa Fe, Nuevo México, para discutir un proyecto de mapeo y secuenciación. En esa reunión volvieron a plantearse los problemas técnicos y los costos, dos aspectos fundamentales que se discutieron acaloradamente a favor y en contra del proyecto.
 
En ese mismo mes un nuevo evento abrió una perspectiva diferente para las investigaciones. Renatto Dulbecco, entonces presidente del Salk Institute, publicó en Science su artículo “A turning Point in Cancer Research: Sequencing the Human Genome”, en el cual defendía la secuenciación del genoma argumentando que la secuencia podría ser útil en las investigaciones del cáncer. Con esa publicación el proyecto recibió el apoyo de una parte de la comunidad médica, debido a que la información de mapas y secuencias humanas puede ser útil para la predicción, diagnóstico, prevención y terapia de cerca de cuatro mil enfermedades hereditarias, y en menor medida para las enfermedades que son resultado de la interacción del material genético y el ambiente.
 
Después de estos intentos la propuesta de mapear y secuenciar el genoma humano tomó forma en Cold Spring Harbor en 1986, pues durante el “Simposium sobre la biología molecular de Homo sapiens” Walter Gilbert y Paul Berg coordinaron una sesión titulada “Proyecto Genoma Humano”. En ese encuentro hubo escepticismo entre algunos científicos, principalmente por los costos y la carencia de una tecnología adecuada. También se cuestionó si era apropiado que el Departamento de Energía dirigiera un programa de esa naturaleza, principalmente porque el interés se había desplazado hacia el terreno médico.
 
En otra de las sesiones de ese simposio, Eiichi Soeda, científico japonés, señaló los planes de su país y de compañías como Hitachi y Fuji de invertir juntas para mejorar la tecnología de secuenciación a gran velocidad en el Instituto Riken en Tokio.
 
El interés de las compañías biotecnológicas en las investigaciones del genoma fue uno de los factores importantes que aceleró las discusiones y la decisión a favor de realizar las investigaciones tanto en Estados Unidos como en Europa. Para fortalecer esta idea, señalamos un par de ejemplos donde se muestra que tanto en el origen como en la creación y en la actual realización del proyecto hay una decisiva participación de intereses económicos.
 
Primero, la industria privada japonesa y las compañías privadas como Nippon Steel Corporation y Kawasaki, entre muchas otras, y varios bancos locales, destinan recursos económicos para estas investigaciones por la posibilidad de desarrollar máquinas de diagnóstico para el mercado médico y para cualquier empresa interesada en aplicar pruebas genéticas.
 
Segundo, a partir de 1987 se ha dado un aumento notable en el número de empresas biotecnológicas tanto en Estados Unidos, Europa y Japón. Esto ha beneficiado al proyecto pues se cuenta con mayores recursos, pero al mismo tiempo genera una serie de problemas. Muchas de estas empresas tienen acuerdos con universidades e instituciones públicas para financiar parte de las investigaciones a cambio de la comercialización de la información obtenida; como consecuencia esto restringe la libre circulación de la información y plantea el dilema de si realmente habrá un beneficio social.
 
Estas compañías tienen tal influencia en las investigaciones del genoma que algunos empresarios, entre ellos Frederick Bourke (empresario norteamericano), han considerado a la industria biotecnológica como la segunda revolución industrial. Esta influencia ha provocado fuertes discusiones, pues existe el intento de empresas e investigadores, como Craig Venter, de patentar genes humanos. Este asunto ha sido tan polémico que Watson tuvo que renunciar en 1992 a la dirección del proyecto, pues se vio involucrado en problemas de patentes de genes. Watson fue reemplazado por Francis S. Collins, quien es director actual del proyecto.
Otra de las figuras principales que impulsaron el proyecto es Renatto Dulbecco, quien ha justificado los altos costos de la medicina moderna señalando que las empresas de alguna manera deben recuperar el dinero invertido en las investigaciones.
 
En un nuevo intento por conseguir la dirección de las investigaciones, poco tiempo después del “Simposium sobre la biología molecular de Homo sapiens”, De Lisi propuso que se realizaran mapas completos del genoma antes de iniciar la secuenciación.
 
Pese a que no había una decisión oficial el Departamento de Energía inició en 1987 los trabajos para conseguir mapas de todos los cromosomas humanos, con objeto de quedarse con la dirección de las investigaciones; para ello se argumentó que dicho departamento contaba con mejores instalaciones para desarrollar el proyecto. Sin embargo, los dirigentes de los Institutos Nacionales de Salud de Estados Unidos, entre ellos James Watson, se habían convencido de que el proyecto era posible, pero no podía dejarse en manos del Departamento de Energía, sino que tenía que estar dirigido por otro grupo de científicos. A Watson le parecía que el Departamento de Energía estaba lleno de físicos y pocos biólogos, en cambio en los institutos de salud había una mayor cantidad de médicos y biólogos.
 
En un ambiente de escepticismo y competencia las ideas y propuestas del proyecto llegaron al Consejo de la Academia de Ciencia e Ingeniería en agosto de 1986. El Consejo inmediatamente convocó a una reunión en Wood Hole Massachusetts, de la que surgió un comité (Comité del Genoma Humano) con plenos poderes para examinar y decidir sobre estas investigaciones. Mientras el grupo de científicos concluía su informe, el gobierno federal decidió financiar la investigación a través de los Institutos Nacionales de Salud.
 
En febrero de 1988, después de catorce meses de estudio, el comité para analizar las propuestas propuso que se hicieran las investigaciones en un reporte de ciento dos páginas titulado “Mapeo y secuenciación del genoma humano”.
 
Posteriormente, el Consejo de la Academia de Ciencia e Ingeniería discutió las ideas del comité y propuso como primer paso hacer los mapas genéticos, al parejo de los mapas de organismos modelo, y como segunda etapa conseguir la secuenciación de los genes. Recomendó un presupuesto de doscientos millones de dólares anuales durante un periodo de quince años. Y designó el papel principal para los Institutos Nacionales de Salud en Bethesda. Ante esta decisión una parte de médicos y biólogos de los institutos de salud mostraron su oposición al proyecto, pensando que quizás no valía la pena desviar fondos hacia el proyecto descuidando otras investigaciones biológicas, principalmente con el argumento de que una secuenciación a ciegas no tenía ningún sentido.
 
Parte de la discusión entre hacer mapas genéticos (lo que querían los dirigentes del Departamento de Energía) y hacer mapas físicos (lo que querían los biólogos moleculares, como Gilbert, Watson y Sinsheimer) encierra en el fondo dos visiones encontradas de dos tradiciones científicas diferentes: la biología molecular, por un lado, que se centra en detalles particulares, y la genética, que trabaja con elementos que se puedan seguir en una población. Los genetistas apoyaban la realización de los mapas porque sostenían que los marcadores genéticos han sido más útiles para la diagnosis de desórdenes hereditarios que las secuencias mismas. En la actualidad los mapas genéticos están casi terminados, mientras que la cantidad del genoma humano secuenciado es alrededor de 85%.
 
Después de cuatro años de discusiones, en marzo de 1988 James Wyngaarden, director general de los Institutos Nacionales de Salud, anunció la creación del Instituto Nacional para las Investigaciones del Genoma Humano, y al mismo tiempo invitó a Watson a dirigir la investigación. Watson fue nombrado director asociado del Instituto Nacional de Investigaciones del Genoma el 1 de octubre de 1988. Un año después (octubre de 1989) inició su función con un grupo de asesores para organizar los trabajos. Ese mismo día, representantes del Departamento de Energía y de los Institutos Nacionales de Salud firmaron un memorándum de entendimiento, mediante el cual ambas instituciones se comprometieron a cooperar en la investigación.
 
 
Bajo estas condiciones se formó un comité integrado por miembros de las dos instituciones y por otros expertos cuyo fin era elaborar un programa para el proyecto. El comité se reunió en Cold Spring Harbor y emitió un informe conjunto que se envió al Congreso de la Nación en febrero de 1990. En él se establecían objetivos concretos que la investigación debería cumplir. El programa fue aprobado por el Congreso, destinándose doscientos millones de dólares anuales durante quince años, a partir de octubre de 1990 y hasta el 30 de septiembre del año 2005, aunque en la última modificación del plan general se propuso terminar en el año 2003 para que la fecha coincida con el cincuenta aniversario del descubrimiento de la estructura del adn en 1953.
 
La información genética que determina el desarrollo del ser humano se encuentra en los cuarenta y seis cromosomas que se hallan en el núcleo de sus células. Cuarenta y cuatro de éstos son llamados autosomas para diferenciarlos de los dos cromosomas que determinan el sexo. Cada cromosoma está formado por una larga cadena de adn consitutida por aproximadamente ciento treinta millones de pares de bases, enrrollada y empaquetada por medio de una serie de proteínas, entre las que predominan las histonas. Prácticamente toda la actividad de regulación y síntesis de proteínas está regida por estas estructuras. Sin embargo hasta hace veinte años era casi imposible establecer con precisión el cromosoma en que se encontraban los genes.
 
Los métodos para distinguir un cromosoma de otro no permitían ir muy lejos en la ubicación de los genes. El mapeo de genes ligados establece la posición de un gen en relación a otro; por medio de las proporciones fenotípicas que produce una cruza dihíbrida es posible saber si dos genes comparten un mismo cromosoma o están en dos distintos; y por su tasa de recombinación es posible estimar qué tan cerca se encuentra uno de otro, y cuando son más de dos genes, establecer sus posiciones relativas, mas no su ubicación física. Los mapas de ligamiento son un método muy útil para el estudio de genes que codifican exclusivamente una característica que varía y que ha permitido entender la transmisión de ciertas enfermedades, pero con grandes limitaciones para establecer distancias en pares de bases así como la localización precisa de genes.
 
El advenimiento de la biología molecular revolucionó por completo el estudio de la genética y muy pronto aparecieron nuevas técnicas para su desarrollo. El descubrimiento de las enzimas de restricción y el desarrollo de las técnicas de adn recombinante abrió las puertas a las elaboración de mapas de ligamiento más precisos, de mapas físicos y al conocimiento de la secuencia del adn que constituye los genes.
 
La geografía genética
 
El estudio de la secuencia de las bases de adn humano mostraba que en ella había una gran variabilidad. Al comparar el adn de un individuo con el de otro se podía observar que si bien hay zonas que se mantienen iguales, una enorme cantidad de ellas variaba aunque fuera muy ligeramente. A estas porciones se les denominó adn polimorfas. Sin embargo, las variaciones que presentaban muchas de estas regiones eran bastante estables, es decir, que en una población, de una generación a otra, sólo variaban de manera bastante limitada. El diseño de sondas de adn permitía detectar estas secuencias con cierta facilidad, lo que hizo de ellas marcadores para ubicar estas regiones en el genoma y puntos de referencia en general. Debido a que son obtenidas por medio de enzimas de restricción, se les llamó Restriction Fragment Length Polymorphisms.
El uso de estos marcadores para elaborar mapas de ligamiento resultó ser de gran utilidad, ya que hacían posible establecer la distancia génica entre un marcador y un gen que codificara para alguna caracaterística fenotípica, entre dos marcadores, o determinar con precisión la ubicación de un marcador en un cromosoma. Así, por ejemplo, si en un mapa de ligamiento se estableciera que un gen determinado se encuentra entre dos marcadores, entonces es posible conocer su ubicación analizando la tira de adn que va de un marcador a otro.
 
El primer objetivo de la fase inicial del programa es la elaboración de mapas de ligamiento de cada uno de los cromosomas humanos, que contengan marcadores de adn polimorfos a una distancia de dos a cinco centimorgan, lo que corresponde aproximadamente a distancias físicas de dos a cinco millones de pares de bases. El fin es contar con una serie de puntos de referencia para poder localizar genes de interés, en pocas palabras, que los investigadores puedan tener puntos bien establecidos que les permitan transitar de manera más accesible por la intrincada geografía de los cromosomas.
 
Aun cuando la precisión de este tipo de mapas debe llegar a ser de un marcador por cada micromorgan de distancia —objetivo contemplado en la segunda fase del programa—, la elaboración en paralelo de un mapa físico, esto es, en el que la distancia entre dos puntos se expresa en número de pares de bases, permite la sobreposición de uno al otro, asociando cada uno de los locus marcados en el mapa de ligamiento a un locus específico del mapa físico, con lo cual se gana en información y exactitud.
 
En la elaboración de un mapa físico de un cromosoma se emplean por lo tanto distancias absolutas y no relativas, y éste debe estar compuesto por la cadena de adn completa que lo constituye, de principio a fin, esto es, cerca de ciento treinta millones de pares de bases. El mapa físico del genoma humano debe comprender la cartografía completa de los veinticuatro cromosomas lo que permitirá cualquier gen de cualquier cromosoma con extrema precisión.
 
Este tipo de mapas se consituyen a partir de la fragmentación de los fragmentos de adn contenidos en las bibliotecas génicas. Así, es posible tomar el adn de alguna parte de un cromosoma, copiarlo por medio de un vector (una bacteria o un virus), aplicarle una enzima de restricción y después pasar los fragmentos por electroforesis, con lo cual se obtienen los llamados fragmentos de restricción. La distancia entre cada uno de los sitios de restricción es dada en pares de bases. Cada uno de los fragmentos se sobrepone a aquél con el que comparte una porción similar o varias. De esta manera se llega a formar un fragmento de adn de mayor tamaño, que a su vez se puede unir a otro u otros más, dando un fragmento final en el que, por medio de marcadores, es posible ubicar genes y finalmente conocer la secuencia de sus nucleótidos con precisión.
Tal vez una de las limitantes para obtener mapas completos por este método es que, con mucha frecuencia, quedan huecos que no son fáciles de llenar, a pesar de las técnicas desarrolladas para ello. En el caso del genoma humano, cuyo adn contiene elementos muy repetitivos, la sobreposición resuta aún más difícil, ya que estos fragmentos llegan a perderse en el proceso de clonación.
 
Uno de los recursos inventados para hacer frente a estos problemas son los marcadores sts (Sequenced-Tagged-Sites), que consisten en una pequeña porción de adn (de doscientos a trescientos pares de bases) cuya secuencia no se encuentra en ninguna otra parte del genoma. Usados como promotores en pcr, es posible obtener largas cadenas de adn flanqueadas por dos sitios de fácil ubicación por su secuencia única. Al aplicar una sonda con esta secuencia a fragmentos de adn unidos por medio de enzimas de restricción, se pueden llenar los huecos que quedaban, ya que, por su longitud y sitio preciso, es posible lograr la unión de varios fragmentos. El empleo de sts en la elaboración de mapas de ligamiento y en mapas físicos es una parte central de la primera fase del proyecto genoma humano.
 
Objetivo final: secuenciación total
 
Una vez que se ha completado el mapa físico de alguna región de un cromosoma, el largo fragmento de adn se corta, se procede a una nueva clonación o subclonación con un vector, y se copia varias veces para proceder a su secuenciación base por base. Este procedimiento ordenado de secuenciación región por región, juntando trozos para reconstituir el orden de un cromosoma y luego de otro, hasta eventualmente secuenciar la totalidad del genoma, es muy preciso, pero es un proyecto laborioso y largo.
 
En 1998, Craig Venter, propuso una nueva metodología y retó a los investigadores del proyecto genoma humano, diciendo que su compañía, armada de secuenciadores automáticos y computadoras, terminaría antes la secuenciación total. Su estrategia consiste en secuenciar fragmentos aleatorios de adn —en contraposición al empleo de bibliotecas de genes ordenadas en mapas físicos— y utilizando algoritmos, recomponer el orden. Este método fue muy criticado en un inicio pues dada la conformación del genoma había muchas posibles fuentes de error. Sin embargo, para corroborar su información, Venter cuenta también con la información generada por el proyecto genoma humano vertida en una base de datos pública, llamada el GenBank. De esta manera, le es posible cotejar sus datos con aquellos generados por el proyecto, y lo que parecía imposible, gracias a las computadoras y las bases de datos, ha resultado ser una metodología rápida y eficaz.
El estudio del genoma humano
En el plan de trabajo de Estados Unidos se establecieron varios centros para llevar a cabo la investigación, tanto en laboratorios nacionales como en universidades de todo el país y desde luego en las instalaciones del Departamento de Energía en los Alamos, Nuevo México, y en el Instituto Nacional de Investigaciones del Genoma Humano en Bethesda, Maryland.
 
De esta manera el Proyecto Genoma Humano en Estados Unidos quedó como una investigación coordinada, con el objetivo de producir en detalle el mapa genético y físico de cada uno de los veintidós cromosomas humanos y los cromosomas sexuales (x/y).
 
La participación de otros países
 
La comunidad científica internacional mostró interés en participar en las investigaciones, por lo que en 1990 trescientos científicos de treinta y cinco países se reunieron en París, Francia, en la sede central de la unesco, para discutir la importancia de una cooperación internacional en el proyecto genoma humano. En esa reunión Watson aclaró que los costos podían reducirse si había una cooperación internacional. Además, no consideraba adecuado que los datos se compartieran con naciones que no participaran en la medida de sus economías. En esto había una amenaza dirigida principalmente a los científicos japoneses, quienes tenían planeado seguir con sus programas de perfeccionamiento de tecnología de secuenciación.
 
La iniciativa de Estados Unidos fue seguida por otros países desarrollados, como el Reino Unido, Japón, los Países Bajos, Escandinavia, Rusia, Suecia, Canadá, Francia, Italia, Alemania, Hungría, Suiza, Portugal, España, Dinamarca y Canadá, que estaban motivados principalmente por la preocupación de no quedar rezagados en las investigaciones, sobre todo por la desventaja biotecnológica y económica que esto implica.
 
En 1991 la Comunidad Europea lanzó una propuesta para la región, buscando abatir el costo de las investigaciones a través de una mayor colaboración, cooperación y coordinación. Para conseguir esto se propuso que la Fundación de Ciencia Europea coordinara las investigaciones en este continente.
 
Antes de 1991 algunas naciones europeas habían iniciado sus programas de investigación. Por ejemplo, el Reino Unido desarrolló una propuesta en 1986 sugerida por Walt Bodmer y Sydney Brenner, dos biólogos moleculares de Inglaterra que estuvieron presentes en el “Simposium sobre la biología molecular de Homo sapiens” y en otras conferencias realizadas en torno al tema. Su propuesta consistía en un programa que involucraba al Consejo de Investigación Médica y a la Fundación Imperial para las Investigaciones del Cáncer.
 
Por su parte, Francia decidió en 1990 crear su propio programa de investigación, logrando una participación importante en las investigaciones del genoma humano a través del Centro de Estudio del Polimorfismo Humano, en colaboración con Estados Unidos. También cuenta con industrias privadas como el Centro Généthon.
 
En Italia la discusión en torno a un programa de investigación sobre el genoma inició en 1987 promovida por Renatto Dulbecco a través del Consejo de Investigación Italiano. El proyecto italiano fue pensado para una colaboración de varias unidades de este centro y diferentes universidades e institutos a lo largo de Italia.
 
Alemania, por su parte, participa en las investigaciones del genoma humano principalmente a través del Centro de Investigación del Cáncer de Alemania, en Heidelberg. Esta institución funciona como un centro de coordinación en la comunidad europea, debido a que cuenta con una base de almacenamiento de datos de secuencias.
 
Japón, como mencionamos anteriormente, ha trabajado desde principio de los ochentas en la fabricación de tecnología de secuenciación. Sin embargo, fue uno de los últimos países industrializados en establecer un programa nacional coordinado de investigación sobre el genoma humano, debido en parte a que los científicos japoneses no mostraban mucho interés en hacer mapas genéticos y físicos del genoma. Como ya mencionamos anteriormente, las industrias japonesas estaban interesadas en invertir sólo en la tecnología de secuenciación. Este interés era compartido por algunos científicos japoneses, entre ellos Akiyoshi Wada, de la Universidad de Tokio, quien propuso establecer una fábrica de secuenciación de adn en Japón. Wada estaba convencido de que esta actividad no era propia de científicos, sino de técnicos y mecánicos bien entrenados.
 
Para terminar la visión de lo que fue en su origen y la posterior difusión de la idea de conseguir mapas genéticos y físicos completos del genoma hasta llegar a consolidarse como una empresa internacional, mencionaremos dos organizaciones involucradas en la organización y coordinación de las investigaciones entre los países participantes.
 
La primera es la Organización Internacional del Genoma (Hugo), creada como un foro internacional en la primera conferencia de Cold Spring Harbor sobre el mapeo y la secuenciación, que se llevó a cabo el 29 de abril de 1988.
 
La segunda es la unesco, pues su director general, el doctor Federico Mayor, reunió en octubre de 1988, en Valencia, España, a un grupo de asesores científicos para considerar el papel de la unesco en el proyecto genoma humano; la primera conferencia sobre este tema se celebró en París en febrero de 1989. En ella los participantes acordaron que la unesco ayudaría facilitando la cooperación internacional; particularmente hacia los países en desarrollo, en donde era más apremiante.
 
El proyecto en América Latina
 
Debido a que la unesco no podría cubrir los programas de muchos grupos y países, se pensó agruparlos por regiones, en grandes programas. Uno de ellos es el Programa Latinoamericano del Genoma Humano, fundado bajo la iniciativa de la Red Latinoamericana de Ciencias Biológicas durante el simposium “Genética molecular y el proyecto genoma humano: perspectivas para América Latina”, realizado en junio de 1990 en Santiago de Chile.
 
Este proyecto está integrado por Chile, Brasil, México, Venezuela, Costa Rica, Colombia, Cuba y otros países de la región. Con este mecanismo de programas regionales se evitan traslapamientos con otros proyectos; además, permite una comunicación eficaz entre la unesco y los países en vías de desarrollo.
 
Bajo este interés, la unesco ha promovido investigaciones sobre el genoma en China, India y Sudáfrica.
 
A pesar de los esfuerzos de la unesco existe una evidente y tremenda asimetría entre las investigaciones de los países desarrollados y los subdesarrollados. Estos últimos participan en las investigaciones aportando acervos de información genética de poblaciones que presentan problemas de enfermedades hereditarias, con datos obtenidos a través de análisis de genealogías y en una mínima porción de secuenciación de genes.
 
Las aristas del proyecto
 
Para terminar esta breve descripción del origen del proyecto señalaremos tres asuntos que han estado en el centro de los debates: los beneficios médicos, el presupuesto destinado a estas investigaciones y los temores sobre el uso de la información genética que podría servir para justificar la discriminación en proporciones inimaginadas.
 
Desde el punto de vista científico representa un gran avance en la comprensión de la naturaleza de los seres vivos, pero es en la medicina donde habrá mayores beneficios. La medicina tradicionalmente se basa en la prevención, detección y cura de la enfermedad. La medicina moderna, influida profundamente por la biología, está encaminada a enfrentar las enfermedades genéticas por medio de la predicción. Una de las promesas de los programas de investigación sobre el genoma es mejorar la habilidad para comprender las enfermedades genéticas y obtener conocimientos para tratar pacientes con esas anormalidades. Actualmente existen algunos tratamientos en el terreno experimental.
 
La información de mapas y secuencias humanas será útil principalmente en la predicción, diagnóstico, prevención y terapia. En la predicción, la información de los mapas puede ser utilizada para predecir el riesgo individual de heredar una enfermedad genética. En el diagnóstico, un gran número de enfermedades genéticas puede ser detectado mediante pruebas genéticas. En la terapia o tratamiento la identificación de genes que provocan enfermedades y sus proteínas puede posibilitar la creación de terapias efectivas. El conocimiento de estos genes y sus proteínas ayudará a perfeccionar las medidas preventivas, basadas sobre todo en dietas o administración de sustancias que retarden o bloqueen los efectos de genes causantes de enfermedades. Un caso ilustrativo que se ha conseguido es poder transplantar médula a niños a los que se les ha detectado el gen ada, causante de 30% de los casos de la enfermedad de immunodeficiencia severa combinada; la efectividad es de 90%.
 
Por otra parte, es indudablemente un gran avance que se puedan detectar genes deletéreos o anormalidades cromosómicas en embriones de corta edad, lo que permite a los padres tomar la decisión de interrumpir el embarazo. Además de errores grandes como la trisomía 21 o el síndrome de Turner, hoy se pueden detectar genes como el de Huntington; el gen que provoca la galactosemia; el gen causante de la acondroplasia, y muchos más. Un gran problema es que toda esta medicina tiene un costo altísimo, pues tan sólo para la detección de genes de alguna enfermedad el costo es de varios miles de dólares; esta situación ha llevado a considerar que el beneficio social es muy limitado, sobre todo si nos damos cuenta de que el costo del mapeo y de la secuenciación de genoma humano será aportado principalmente por presupuesto público (tanto en los países desarrollados como en los países en vías de desarrollo) y en menor grado por la iniciativa privada .
 
Una de las grandes objeciones a este proyecto fue si tenía sentido secuenciar todo sin conocerlo, pensando que el argumento de beneficio médico era solamente utilizado para desviar fondos de investigaciones o programas sociales de atención y beneficio médico que tienen un impacto más inmediato. Sin embargo, pese a que este proyecto tiene un costo demasiado elevado y una utilidad práctica que no resulta nada sencillo aplicar, para muchos defensores del proyecto no existía tal desvío tremendo de fondos, contrargumentando, por ejemplo, que el proyecto costará aproximadamente de tres mil a cinco mil millones de dólares, mucho menos que otras investigaciones científicas como la estrategia de defensa nacional de Estados Unidos, que recibió tan sólo en 1993 un presupuesto de tres mil ochocientos millones de dólares, mientras que la asignación para el proyecto en ese mismo año fue de ciento setenta y un millones de dólares. La misma situación se repite en muchos países donde los recursos destinados a proyectos o programas militares supera en mucho los recursos destinados a las investigaciones del genoma humano.
 
Por último, ha surgido un fuerte temor de problemas sociales relacionados con la discriminación, debido a la presencia de una ideología reduccionista en el marco general de las investigaciones del genoma humano; una visión que no sólo se percibe dentro de la comunidad científica, sino que trasciende hacia la sociedad. Esta ideología ha surgido porque la metodología de investigación utilizada en la biología molecular (el reduccionismo metodológico o explicativo, que abarca cuestiones referentes a la estrategia de investigación y a la adquisición de conocimientos) se ha convertido en una forma de “reduccionismo genético”, al afirmar que todas las propiedades biológicas de un organismo pueden ser explicadas y determinadas únicamente por sus genes.
 
De esta forma las explicaciones reduccionistas como una estrategia de investigación han sido transformadas en una ideología por los proponentes del proyecto. El empleo del reduccionismo en la ciencia en casos como el que nos ocupa ha sido traducido en una visión metafísica, pues, por ejemplo, algunos biólogos moleculares han dicho que todos los problemas biológicos son mejor enfocados con el estudio de los genes. Muchos dirigentes de la revolución en biología molecular han reivindicado todo papel explicativo para la genética y muchos de ellos están asociados con el inicio del proyecto. El problema es creer que en las secuencias genéticas está la clave para construir un ser humano, pero un ser humano es resultado de una fina interacción de un genoma y un ambiente determinado. Así como habrá diferencias si cambia el genoma las habrá si cambia el ambiente; lo más importante es entender que a un ser humano no lo define solamente su estructura física, lo define, ante todo, su manera de pensar, su manera de actuar, su forma de ser humano. Si no se toma en cuenta lo antes señalado existe el riesgo de problemas sociales de graves consecuencias. La información actual sobre el genoma humano nos ha dado las bases para una nueva práctica médica; de la misma manera nos ha dado las bases para argumentar, justificar y aumentar la discriminación, por ejemplo, en la contratación de empleados o en la venta de seguros médicos que podrían negarse a personas con aparentes problemas genéticos.
 
La información de las secuencias puede tener un impacto positivo en la ciencia, en la práctica médica y en el terreno biotecnológico con aplicaciones en la agricultura y en la cría de animales de importancia económica. Sin embargo, no debemos olvidarnos de las lecciones de la historia sobre el mal uso que a veces se le da al conocimiento científico, debido a que la información obtenida puede usarse inadecuadamente en contra de sectores de la población humana (principalmente contra los grupos que por su raza o clase social siempre han sufrido discriminación).
 
La razón de este temor es, por un lado, la existencia de una concepción equivocada del genoma; la creencia de que el conocimiento de la información genética es suficiente para explicar y definir todo lo que un ser humano representa, biológica, estructural, intelectual y emocionalmente. Por otro lado, la causa que originó y que le ha dado impulso a estas investigaciones no es precisamente el convencimiento de un beneficio social, sino en gran medida es consecuencia de la competencia económica y comercial, en donde las partes que intentan salir mejor beneficiadas son las industrias biotecnológicas de los países desarrollados donde se realiza la mayoría de la investigación.
Referencias bibliográficas
 
Bishop, Jerry. 1992. Genoma: la historia de la aventura científica más asombrosa de nuestro tiempo, el intento de trazar el mapa genético del cuerpo humano. Plaza & Janes 401 pp.
Engel, L. W. 1993. “The Human Genome Project: History, Goals and Progress to Date”, Arch. Pathol. Lab. Med., 117, pp. 459-465.
Haq, M. M. 1993. “Medical Genetics and the Human Genome Project: a historical review”, Texas Medicine/the journal, 89(3), pp. 68-73.
Keleher, Cynthia. 1993. “Translating the genetics library: The goal, metods and applications of the Human Genome Project”, Bull. Med. Libr. Assoc., 81(3), pp. 277-277.
Leder, Phillip. 1990. “Can The Human Genome Project Be Saved From its Critics... and Itself?”, Cell, 63, pp. 1-3.
Lee, Thomas F. 1994. El Proyecto Genoma Humano. Gedisa, Barcelona.
Noguera Solano, Ricardo y Lucia Ramírez Escobar. 1998, El proyecto genoma humano: una aproximación histórica. Tesis de Licenciatura, Facultad de Ciencias, unam, 85 pp.
Oliva, Virgil Rafael. 1996. Genoma humano. Barcelona, 224 pp.
Watson, J. D. 1990. “The Human Genome Project: Past, Present and Future”, Science, 248, pp. 44-48.
Watson and Cook-Deegan. 1991 “Origins of the Human Genome Project”, faseb, J 5, pp. 8-11.
Wilkie, Tom. 1993. El conocimiento peligroso: el proyecto genoma humano y sus implicaciones. Faber and Faber.
Ricardo Noguera Solano
Facultad de Ciencias,
Universidad Nacional Autónoma de México.
 
 
 
Rosaura Ruiz Gutiérrez
Facultad de Ciencias,
Universidad Nacional Autónoma de México.
flechavolver58   Regresar al índice artículo siguiente

Você está aqui: Inicio Búsqueda Titulo revistas revista ciencias 57 Historia natural de la Inteligencia